Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 7, Pages 1304–1316 (Mi zvmmf9608)  

This article is cited in 16 scientific papers (total in 16 papers)

Spatial discretization of the one-dimensional quasi-gasdynamic system of equations and the entropy balance equation

A. A. Zlotnikab

a National Research University "Moscow Power Engineering Institute"
b Moscow Power Engineering Institute (Technical University)
References:
Abstract: For the quasi-gasdynamic system of equations, there holds the law of nondecreasing entropy. Difference methods based on this system have been successfully used in numerous applications and test gasdynamic computations. In theoretical terms, however, for standard spatial discretizations of this system, the nondecreasing entropy law does not hold exactly even in the one-dimensional case because of the mesh imbalance terms. For the quasi-gasdynamic equations, a new conservative spatial discretization is proposed for which the entropy balance equation has an appropriate form and the entropy production is guaranteed to be nonnegative (which also holds in the presence of body forces and heat sources). An important element of this discretization is that it makes use of nonstandard space-averaging techniques, including a nonlinear “logarithmic” averaging of the density and internal energy. The results hold on arbitrary nonuniform meshes.
Key words: gas dynamics, quasi-gasdynamic system of equations, spatial discretization, entropy balance equation.
Received: 16.01.2012
Revised: 01.02.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 7, Pages 1060–1071
DOI: https://doi.org/10.1134/S0965542512070111
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. A. Zlotnik, “Spatial discretization of the one-dimensional quasi-gasdynamic system of equations and the entropy balance equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:7 (2012), 1304–1316; Comput. Math. Math. Phys., 52:7 (2012), 1060–1071
Citation in format AMSBIB
\Bibitem{Zlo12}
\by A.~A.~Zlotnik
\paper Spatial discretization of the one-dimensional quasi-gasdynamic system of equations and the entropy balance equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 7
\pages 1304--1316
\mathnet{http://mi.mathnet.ru/zvmmf9608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3245224}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52.1060Z}
\elib{https://elibrary.ru/item.asp?id=17780696}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 7
\pages 1060--1071
\crossref{https://doi.org/10.1134/S0965542512070111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000306858900009}
\elib{https://elibrary.ru/item.asp?id=20477628}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864417655}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9608
  • https://www.mathnet.ru/eng/zvmmf/v52/i7/p1304
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :135
    References:65
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024