Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 9, Pages 1594–1615 (Mi zvmmf9538)  

This article is cited in 43 scientific papers (total in 43 papers)

Regularized parametric Kuhn–Tucker theorem in a Hilbert space

M. I. Sumin

Nizhni Novgorod State University, pr. Gagarina 23, Nizhni Novgorod, 603950 Russia
References:
Abstract: For a parametric convex programming problem in a Hilbert space with a strongly convex objective functional, a regularized Kuhn–Tucker theorem in nondifferential form is proved by the dual regularization method. The theorem states (in terms of minimizing sequences) that the solution to the convex programming problem can be approximated by minimizers of its regular Lagrangian (which means that the Lagrange multiplier for the objective functional is unity) with no assumptions made about the regularity of the optimization problem. Points approximating the solution are constructively specified. They are stable with respect to the errors in the initial data, which makes it possible to effectively use the regularized Kuhn–Tucker theorem for solving a broad class of inverse, optimization, and optimal control problems. The relation between this assertion and the differential properties of the value function (S-function) is established. The classical Kuhn–Tucker theorem in nondifferential form is contained in the above theorem as a particular case. A version of the regularized Kuhn–Tucker theorem for convex objective functionals is also considered.
Key words: convex programming, Lagrange principle, Kuhn–Tucker theorem in nondifferential form, parametric problem, minimizing sequence, duality, regularization, perturbation method.
Received: 21.03.2011
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 9, Pages 1489–1509
DOI: https://doi.org/10.1134/S0965542511090156
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011), 1594–1615; Comput. Math. Math. Phys., 51:9 (2011), 1489–1509
Citation in format AMSBIB
\Bibitem{Sum11}
\by M.~I.~Sumin
\paper Regularized parametric Kuhn--Tucker theorem in a~Hilbert space
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 9
\pages 1594--1615
\mathnet{http://mi.mathnet.ru/zvmmf9538}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907140}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 9
\pages 1489--1509
\crossref{https://doi.org/10.1134/S0965542511090156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297344500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80052876493}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9538
  • https://www.mathnet.ru/eng/zvmmf/v51/i9/p1594
  • This publication is cited in the following 43 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025