Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 8, Pages 1400–1418 (Mi zvmmf9522)  

This article is cited in 13 scientific papers (total in 13 papers)

Relaxation oscillations and diffusion chaos in the Belousov reaction

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a Faculty of Mathematics, Yaroslavl State University, Sovetskaya ul. 14, Yaroslavl, 150000 Russia
b Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119992 Russia
References:
Abstract: Asymptotic and numerical analysis of relaxation self-oscillations in a three-dimensional system of Volterra ordinary differential equations that models the well-known Belousov reaction is carried out. A numerical study of the corresponding distributed model – the parabolic system obtained from the original system of ordinary differential equations with the diffusive terms taken into account subject to the zero Neumann boundary conditions at the endpoints of a finite interval is attempted. It is shown that, when the diffusion coefficients are proportionally decreased while the other parameters remain intact, the distributed model exhibits the diffusion chaos phenomenon; that is, chaotic attractors of arbitrarily high dimension emerge.
Key words: Belousov reaction, distributed model, diffusion chaos, relaxation cycle, attractor, Lyapunov dimension.
Received: 18.01.2011
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 8, Pages 1307–1324
DOI: https://doi.org/10.1134/S0965542511080100
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation oscillations and diffusion chaos in the Belousov reaction”, Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011), 1400–1418; Comput. Math. Math. Phys., 51:8 (2011), 1307–1324
Citation in format AMSBIB
\Bibitem{GlyKolRoz11}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Relaxation oscillations and diffusion chaos in the Belousov reaction
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 8
\pages 1400--1418
\mathnet{http://mi.mathnet.ru/zvmmf9522}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2906715}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 8
\pages 1307--1324
\crossref{https://doi.org/10.1134/S0965542511080100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000293977100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80051748166}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9522
  • https://www.mathnet.ru/eng/zvmmf/v51/i8/p1400
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024