Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 5, Pages 881–897 (Mi zvmmf9338)  

This article is cited in 7 scientific papers (total in 7 papers)

The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations

V. M. Goloviznin, A. A. Kanaev

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
Full-text PDF (560 kB) Citations (7)
References:
Abstract: For the CABARET finite difference scheme, a new approach to the construction of convective flows for the one-dimensional nonlinear transport equation is proposed based on the minimum principle of partial local variations. The new approach ensures the monotonicity of solutions for a wide class of problems of a fairly general form including those involving discontinuous and nonconvex functions. Numerical results illustrating the properties of the proposed method are discussed.
Key words: CABARET finite difference scheme, transport equation, hyperbolic equations, principle of minimum of partial local variations.
Received: 25.03.2010
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 5, Pages 824–839
DOI: https://doi.org/10.1134/S0965542511050046
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: V. M. Goloviznin, A. A. Kanaev, “The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011), 881–897; Comput. Math. Math. Phys., 51:5 (2011), 824–839
Citation in format AMSBIB
\Bibitem{GolKan11}
\by V.~M.~Goloviznin, A.~A.~Kanaev
\paper The principle of minimum of partial local variations for determining convective flows in the numerical solution of one-dimensional nonlinear scalar hyperbolic equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 5
\pages 881--897
\mathnet{http://mi.mathnet.ru/zvmmf9338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2859151}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 5
\pages 824--839
\crossref{https://doi.org/10.1134/S0965542511050046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290935800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79957515003}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9338
  • https://www.mathnet.ru/eng/zvmmf/v51/i5/p881
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024