Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 3, Pages 470–479 (Mi zvmmf8084)  

Comment on failure of excited-state energy calculation of analytical transfer matrix method for the potential $V(x)=(1/2)kx^2+\lambda x^4$

A. Hutem

Physics Division, Faculty of Science and Technology, Chiangmai Rajabhat University, Chiang mai 50300, Thailand
References:
Abstract: The analytical transfer matrix method is applied to the quantum mechanical bound-state problem potential with $V(x)=(1/2)kx^2+\lambda x^4$. It is found that numerical values of phase contribution are unstable when compared with standard methods like numerical shoot method, WKB approximation, this leads to substantial errors in excited-state energy calculation.
Key words: bound-state problem of quantum mechanics, analytical transfer matrix-method, numerical method for quadrat – well problem.
Received: 27.07.2009
Revised: 17.05.2010
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 3, Pages 435–443
DOI: https://doi.org/10.1134/S0965542511030079
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: English
Citation: A. Hutem, “Comment on failure of excited-state energy calculation of analytical transfer matrix method for the potential $V(x)=(1/2)kx^2+\lambda x^4$”, Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011), 470–479; Comput. Math. Math. Phys., 51:3 (2011), 435–443
Citation in format AMSBIB
\Bibitem{Hut11}
\by A.~Hutem
\paper Comment on failure of excited-state energy calculation of analytical transfer matrix method for the potential
$V(x)=(1/2)kx^2+\lambda x^4$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 3
\pages 470--479
\mathnet{http://mi.mathnet.ru/zvmmf8084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2839578}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 3
\pages 435--443
\crossref{https://doi.org/10.1134/S0965542511030079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000289167800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953702864}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf8084
  • https://www.mathnet.ru/eng/zvmmf/v51/i3/p470
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :86
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024