Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 11, Pages 1923–1931 (Mi zvmmf79)  

This article is cited in 2 scientific papers (total in 2 papers)

Localization of the eigenvalues of a pencil of positive definite matrices

I. E. Kaporin

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (904 kB) Citations (2)
References:
Abstract: Let $A$ and $B$ be real square positive definite matrices close to each other. A domain $S$ on the complex plane that contains all the eigenvalues $\lambda$ of the problem $Az=\lambda Bz$ is constructed analytically. The boundary $\partial S$ of $S$ is a curve known as the limacon of Pascal. Using the standard conformal mapping of the exterior of this curve (or of the exterior of an enveloping circular lune) onto the exterior of the unit disc, new analytical bounds are obtained for the convergence rate of the minimal residual method (GMRES) as applied to solving the linear system $Ax=b$ with the preconditioner $B$.
Key words: matrix pencil, localization of spectrum, positive definite matrices, system of linear algebraic equations, iterative solution, minimal residual method, estimate for convergence rate, preconditioning, Krylov subspace.
Received: 20.04.2007
Revised: 26.02.2008
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 11, Pages 1917–1926
DOI: https://doi.org/10.1134/S0965542508110018
Bibliographic databases:
Document Type: Article
UDC: 519.614
Language: Russian
Citation: I. E. Kaporin, “Localization of the eigenvalues of a pencil of positive definite matrices”, Zh. Vychisl. Mat. Mat. Fiz., 48:11 (2008), 1923–1931; Comput. Math. Math. Phys., 48:11 (2008), 1917–1926
Citation in format AMSBIB
\Bibitem{Kap08}
\by I.~E.~Kaporin
\paper Localization of the eigenvalues of a~pencil of positive definite matrices
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 11
\pages 1923--1931
\mathnet{http://mi.mathnet.ru/zvmmf79}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2528868}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 11
\pages 1917--1926
\crossref{https://doi.org/10.1134/S0965542508110018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262335200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57149136758}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf79
  • https://www.mathnet.ru/eng/zvmmf/v48/i11/p1923
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:518
    Full-text PDF :151
    References:73
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024