Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 12, Pages 2186–2194 (Mi zvmmf73)  

This article is cited in 48 scientific papers (total in 48 papers)

Propagation of TM waves in a Kerr nonlinear layer

D. V. Valovik, Yu. G. Smirnov

Penza State University, ul. Krasnaya 40, Penza, 440026, Russia
References:
Abstract: TM electromagnetic waves propagating through a nonlinear homogeneous isotropic unmagnetized dielectric layer located between two homogeneous isotropic half-spaces are studied. The nonlinearity in the layer obeys the Kerr law. The problem is reduced to a system of nonlinear ordinary differential equations. A dispersion relation for the propagation constants is derived. The results are compared with those in the case of a linear layer.
Key words: boundary value problems for Maxwell's equations, TM waves, nonlinear media, dispersion relation.
Received: 14.01.2008
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 12, Pages 2217–2225
DOI: https://doi.org/10.1134/S0965542508120117
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: D. V. Valovik, Yu. G. Smirnov, “Propagation of TM waves in a Kerr nonlinear layer”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008), 2186–2194; Comput. Math. Math. Phys., 48:12 (2008), 2217–2225
Citation in format AMSBIB
\Bibitem{ValSmi08}
\by D.~V.~Valovik, Yu.~G.~Smirnov
\paper Propagation of TM waves in a~Kerr nonlinear layer
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 12
\pages 2186--2194
\mathnet{http://mi.mathnet.ru/zvmmf73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530573}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 12
\pages 2217--2225
\crossref{https://doi.org/10.1134/S0965542508120117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262335300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59749089570}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf73
  • https://www.mathnet.ru/eng/zvmmf/v48/i12/p2186
  • This publication is cited in the following 48 articles:
    1. Tomáš Dohnal, Runan He, “Bifurcation and asymptotics of cubically nonlinear transverse magnetic surface plasmon polaritons”, Journal of Mathematical Analysis and Applications, 538:2 (2024), 128422  crossref
    2. Ochirbat Nyamsuren, Purevdorj Munkhbaatar, Duger Ulam-Orgikh, Jav Davaasambuu, G. Ochirbat, “TM Standing Wave Solution of Maxwell Equations in a Self-Defocusing Kerr Media and its Application to a Thin-Film Waveguide”, SSP, 323 (2021), 100  crossref
    3. Smirnov Yu.G., “Integral Dispersion Equation Method For Nonlinear Eigenvalue Problems”, Differ. Equ., 56:10 (2020), 1298–1305  crossref  isi
    4. Valovik D.V., “Asymptotic Analysis of a Nonlinear Eigenvalue Problem Arising in Electromagnetics”, Nonlinearity, 33:7 (2020), 3470–3499  crossref  isi
    5. Valovik D.V., “On Spectral Properties of the Sturm-Liouville Operator With Power Nonlinearity”, Mon.heft. Math., 188:2 (2019), 369–385  crossref  mathscinet  isi
    6. Tikhov S.V., Valovik D.V., 2019 Ursi Asia-Pacific Radio Science Conference (Ap-Rasc), IEEE, 2019  isi
    7. S.V. Tikhov, D.V. Valovik, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 2019, 1  crossref
    8. Smolkin E. Shestopalov Yu., “Nonlinear Goubau Line: Analytical-Numerical Approaches and New Propagation Regimes”, J. Electromagn. Waves Appl., 31:8 (2017), 781–797  crossref  isi  scopus
    9. Valovik D.V., Kurseeva V.Yu., “on the Eigenvalues of a Nonlinear Spectral Problem”, Differ. Equ., 52:2 (2016), 149–156  crossref  mathscinet  zmath  isi  elib  scopus
    10. Smirnov Yu.G., Valovik D.V., “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell?s equations with cubic nonlinearity”, J. Math. Phys., 57:10 (2016), 103504  crossref  mathscinet  zmath  isi  elib  scopus
    11. Valovik D., Smirnov Yu., “Electromagnetic TM wave propagation in a layer with Kerr nonlinearity: Analytical results”, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) (Seoul), IEEE, 2016, 204–207  crossref  isi  scopus
    12. Smirnov Yu.G., Valovik D.V., “Guided Electromagnetic Waves Propagating in a Plane Dielectric Waveguide With Nonlinear Permittivity”, Phys. Rev. A, 91:1 (2015), 013840  crossref  mathscinet  adsnasa  isi  elib  scopus
    13. E. A. Marennikova, “Zadacha na sobstvennye znacheniya, opisyvayuschaya rasprostranenie elektromagnitnykh TE-voln v ploskom dielektricheskom volnovode, zapolnennom nelineinoi neodnorodnoi sredoi”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2015, no. 3, 72–87  mathnet
    14. Kiili H., Serov V., “Tm-Waves Guided by a Nonlinear Film with Complex Permittivity”, J. Comput. Appl. Math., 271 (2014), 339–355  crossref  mathscinet  zmath  isi  elib  scopus
    15. Valovik D.V., “Integral Dispersion Equation Method To Solve a Nonlinear Boundary Eigenvalue Problem”, Nonlinear Anal.-Real World Appl., 20 (2014), 52–58  crossref  mathscinet  zmath  isi  elib  scopus
    16. Yury G. Smirnov, Eugenii Yu. Smol'kin, Dmitry V. Valovik, “Nonlinear Double-Layer Bragg Waveguide: Analytical and Numerical Approaches to Investigate Waveguiding Problem”, Advances in Numerical Analysis, 2014 (2014), 1  crossref
    17. Valovik D.V., Zarembo E.V., “Solution of the nonlinear eigenvalue boundary-value problem for TM electromagnetic waves propagating in a Kerr-nonlinear layer by means of the cauchy problem method”, J. Commun. Technol. Electron., 58:1 (2013), 62–65  crossref  crossref  isi  elib  elib  scopus
    18. D. V. Valovik, E. V. Zarembo, “The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity”, Comput. Math. Math. Phys., 53:1 (2013), 78–92  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    19. Bogolyubov A.N., Malykh M.D., Belov A.A., “Volnovod s nelineinoi vstavkoi”, Nelineinyi mir, 11:1 (2013), 16–25  elib
    20. D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Comput. Math. Math. Phys., 53:7 (2013), 973–983  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :157
    References:58
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025