Abstract:
TM electromagnetic waves propagating through a nonlinear homogeneous isotropic unmagnetized dielectric layer located between two homogeneous isotropic half-spaces are studied. The nonlinearity in the layer obeys the Kerr law. The problem is reduced to a system of nonlinear ordinary differential equations. A dispersion relation for the propagation constants is derived. The results are compared with those in the case of a linear layer.
Key words:
boundary value problems for Maxwell's equations, TM waves, nonlinear media, dispersion relation.
This publication is cited in the following 48 articles:
Tomáš Dohnal, Runan He, “Bifurcation and asymptotics of cubically nonlinear transverse magnetic surface plasmon polaritons”, Journal of Mathematical Analysis and Applications, 538:2 (2024), 128422
Ochirbat Nyamsuren, Purevdorj Munkhbaatar, Duger Ulam-Orgikh, Jav Davaasambuu, G. Ochirbat, “TM Standing Wave Solution of Maxwell Equations in a Self-Defocusing Kerr Media and its Application to a Thin-Film Waveguide”, SSP, 323 (2021), 100
Smolkin E. Shestopalov Yu., “Nonlinear Goubau Line: Analytical-Numerical Approaches and New Propagation Regimes”, J. Electromagn. Waves Appl., 31:8 (2017), 781–797
Valovik D.V., Kurseeva V.Yu., “on the Eigenvalues of a Nonlinear Spectral Problem”, Differ. Equ., 52:2 (2016), 149–156
Smirnov Yu.G., Valovik D.V., “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell?s equations with cubic nonlinearity”, J. Math. Phys., 57:10 (2016), 103504
Valovik D., Smirnov Yu., “Electromagnetic TM wave propagation in a layer with Kerr nonlinearity: Analytical results”, 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) (Seoul), IEEE, 2016, 204–207
Smirnov Yu.G., Valovik D.V., “Guided Electromagnetic Waves Propagating in a Plane Dielectric Waveguide With Nonlinear Permittivity”, Phys. Rev. A, 91:1 (2015), 013840
E. A. Marennikova, “Zadacha na sobstvennye znacheniya, opisyvayuschaya rasprostranenie elektromagnitnykh TE-voln v ploskom dielektricheskom volnovode, zapolnennom nelineinoi neodnorodnoi sredoi”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2015, no. 3, 72–87
Kiili H., Serov V., “Tm-Waves Guided by a Nonlinear Film with Complex Permittivity”, J. Comput. Appl. Math., 271 (2014), 339–355
Valovik D.V., “Integral Dispersion Equation Method To Solve a Nonlinear Boundary Eigenvalue Problem”, Nonlinear Anal.-Real World Appl., 20 (2014), 52–58
Yury G. Smirnov, Eugenii Yu. Smol'kin, Dmitry V. Valovik, “Nonlinear Double-Layer Bragg Waveguide: Analytical and Numerical Approaches to Investigate Waveguiding Problem”, Advances in Numerical Analysis, 2014 (2014), 1
Valovik D.V., Zarembo E.V., “Solution of the nonlinear eigenvalue boundary-value problem for TM electromagnetic waves propagating in a Kerr-nonlinear layer by means of the cauchy problem method”, J. Commun. Technol. Electron., 58:1 (2013), 62–65
D. V. Valovik, E. V. Zarembo, “The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity”, Comput. Math. Math. Phys., 53:1 (2013), 78–92
D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Comput. Math. Math. Phys., 53:7 (2013), 973–983