Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2005, Volume 45, Number 3, Pages 416–428 (Mi zvmmf683)  

This article is cited in 3 scientific papers (total in 3 papers)

Best uniform approximation of a convex compact set by a ball in an arbitrary norm

S. I. Dudov, I. V. Zlatorunskaya

Saratov State University, ul. Astrakhanskaya 42, Saratov, 410012, Russia
References:
Abstract: The finite-dimensional problem of the best uniform approximation of a convex compact set by a ball with respect to an arbitrary norm in the Hausdorff metric corresponding to that norm is considered. When the compact set to be estimated and the norm ball are polyhedra, the problem is shown to reduce to a linear program. This fact is used to design an iterative method for solving the problem in the case of an arbitrary compact set and an arbitrary norm. At every step of the method, the unit ball in the norm used and the underlying compact set are replaced by their outer polyhedral approximations, where the polyhedra are constructed from supporting hyperplanes drawn through certain boundary points.
Key words: convex compact set, the ball in a norm, best approximation, linear programming problem.
Received: 15.09.2003
Revised: 25.05.2004
Bibliographic databases:
Document Type: Article
UDC: 519.658
Language: Russian
Citation: S. I. Dudov, I. V. Zlatorunskaya, “Best uniform approximation of a convex compact set by a ball in an arbitrary norm”, Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005), 416–428; Comput. Math. Math. Phys., 45:3 (2005), 399–411
Citation in format AMSBIB
\Bibitem{DudZla05}
\by S.~I.~Dudov, I.~V.~Zlatorunskaya
\paper Best uniform approximation of a convex compact set by a ball in an arbitrary norm
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 3
\pages 416--428
\mathnet{http://mi.mathnet.ru/zvmmf683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161483}
\zmath{https://zbmath.org/?q=an:1069.22001}
\elib{https://elibrary.ru/item.asp?id=9131855}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 3
\pages 399--411
\elib{https://elibrary.ru/item.asp?id=13477568}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf683
  • https://www.mathnet.ru/eng/zvmmf/v45/i3/p416
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :122
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024