Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2005, Volume 45, Number 4, Pages 574–586 (Mi zvmmf663)  

This article is cited in 4 scientific papers (total in 4 papers)

A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function

S. L. Skorokhodov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
References:
Abstract: A method is proposed for evaluating the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)=\sum_{k=0}^\infty f_k$ in terms of the Riemann zeta function $\zeta(s)$ and the Hurwitz zeta function $\zeta(1/2,s)$. By analyzing an asymptotic expansion of the coefficients $f_k$ as $k\to\infty$, an expansion of ${}_pF_{p-1}$ is constructed in the form of combinations of $\zeta(s)$ and $\zeta(1/2,s)$ with explicit coefficients expressed in terms of generalized Bernoulli polynomials. The convergence of the expansion can be considerably accelerated by choosing optimal values of two control parameters. The efficiency of the method is demonstrated through a great deal of computations and comparisons with Mathematica and Maple.
Key words: generalized hypergeometric function of unit argument, numerical algorithm, Riemann zeta function, Hurwitz zeta function, generalized Bernoulli polynomials.
Received: 06.12.2004
Bibliographic databases:
Document Type: Article
UDC: 519.6:517.588
Language: Russian
Citation: S. L. Skorokhodov, “A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005), 574–586; Comput. Math. Math. Phys., 45:4 (2005), 550–562
Citation in format AMSBIB
\Bibitem{Sko05}
\by S.~L.~Skorokhodov
\paper A method for computing the generalized hypergeometric function ${}_pF_{p-1}(a_1,\dots,a_p;b_1,\dots,b_{p-1};1)$ in terms of the riemann zeta function
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 4
\pages 574--586
\mathnet{http://mi.mathnet.ru/zvmmf663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161615}
\zmath{https://zbmath.org/?q=an:1077.33008}
\elib{https://elibrary.ru/item.asp?id=9139256}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 4
\pages 550--562
\elib{https://elibrary.ru/item.asp?id=13489960}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf663
  • https://www.mathnet.ru/eng/zvmmf/v45/i4/p574
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025