|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 12, Pages 2107–2112
(Mi zvmmf65)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems
B. M. Podlevskii Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, ul. Naukova 3-b, Lvov, 79000, Ukraine
Abstract:
An iterative algorithm is examined for finding the eigenvalues of the two-parameter (multiparameter) algebraic eigenvalue problem. This algorithm uses Newton's method and an efficient numerical procedure for differentiating determinants. Some numerical examples are given.
Key words:
two-parameter (multiparameter) eigenvalue problems, Newton's method, determinant differentiation.
Received: 15.11.2007 Revised: 20.05.2008
Citation:
B. M. Podlevskii, “Newton's method as a tool for finding the eigenvalues of certain two-parameter (multiparameter) spectral problems”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008), 2107–2112; Comput. Math. Math. Phys., 48:12 (2008), 2140–2145
Linking options:
https://www.mathnet.ru/eng/zvmmf65 https://www.mathnet.ru/eng/zvmmf/v48/i12/p2107
|
Statistics & downloads: |
Abstract page: | 353 | Full-text PDF : | 144 | References: | 53 | First page: | 2 |
|