Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2005, Volume 45, Number 6, Pages 966–982 (Mi zvmmf636)  

This article is cited in 25 scientific papers (total in 25 papers)

On the analytical and numerical stability of critical Lagrange multipliers

A. F. Izmailov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: If the constraint qualification does not hold at a stationary point of a constrained optimization problem, then the corresponding Lagrange multiplier may not be unique. Moreover, in the set of multipliers, one can select special (so-called critical) multipliers possessing certain specific properties that are lacking in the other multipliers. In particular, it is the critical multipliers that are usually stable with respect to small perturbations, and it is the critical multipliers that attract trajectories of Newton's method as applied to the Lagrange system of equations. The present paper is devoted to an analysis of these issues.
Key words: Lagrange multipliers, constrained optimization problems, stability of critical Lagrange multipliers.
Received: 16.11.2004
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. F. Izmailov, “On the analytical and numerical stability of critical Lagrange multipliers”, Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005), 966–982; Comput. Math. Math. Phys., 45:6 (2005), 930–946
Citation in format AMSBIB
\Bibitem{Izm05}
\by A.~F.~Izmailov
\paper On the analytical and numerical stability of critical Lagrange multipliers
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 6
\pages 966--982
\mathnet{http://mi.mathnet.ru/zvmmf636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2193414}
\zmath{https://zbmath.org/?q=an:1087.70011}
\elib{https://elibrary.ru/item.asp?id=9142380}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 6
\pages 930--946
\elib{https://elibrary.ru/item.asp?id=13479077}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf636
  • https://www.mathnet.ru/eng/zvmmf/v45/i6/p966
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:695
    Full-text PDF :259
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024