Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2005, Volume 45, Number 9, Pages 1587–1593 (Mi zvmmf596)  

This article is cited in 4 scientific papers (total in 4 papers)

On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (779 kB) Citations (4)
References:
Abstract: The Dirichlet problem for the Laplace equation in a rectangular parallelepiped is considered. It is assumed that the boundary values have the third derivatives on the faces that satisfy the Hцlder condition, the boundary values are continuous on the edges, and their second derivatives satisfy the compatibility condition that is implied by the Laplace equation. The uniform convergence of the grid solution of the Dirichlet problem and of its difference derivative on the cubic grid at the rate $O(h^2)$, where $h$ is the grid size, is proved. A piecewise polylinear continuation of the grid solution and of its difference derivative uniformly approximate the solution of the Dirichlet problem and its second derivative on the close parallelepiped with the second order of accuracy with respect to $h$.
Key words: numerical solution to the Laplace equation, convergence of grid solutions, rectangular parallelepiped domain.
Received: 12.03.2004
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005), 1587–1593; Comput. Math. Math. Phys., 45:9 (2005), 1531–1537
Citation in format AMSBIB
\Bibitem{Vol05}
\by E.~A.~Volkov
\paper On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2005
\vol 45
\issue 9
\pages 1587--1593
\mathnet{http://mi.mathnet.ru/zvmmf596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2216070}
\zmath{https://zbmath.org/?q=an:1117.65364}
\transl
\jour Comput. Math. Math. Phys.
\yr 2005
\vol 45
\issue 9
\pages 1531--1537
Linking options:
  • https://www.mathnet.ru/eng/zvmmf596
  • https://www.mathnet.ru/eng/zvmmf/v45/i9/p1587
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :126
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024