Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1983, Volume 23, Number 2, Pages 290–300 (Mi zvmmf5596)  

This article is cited in 4 scientific papers (total in 4 papers)

Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature

I. A. Rumyantsev

Moscow
Abstract: A local interpolation method is described, whereby the curve is kept monotonic and its curvature sign fixed, provided that the initial points enable such a curve to be constructed. The algorithm allows the straight parts on the curve to be separated and provides continuity of the derivatives of a given degree. It is shown that, if the function $f^{(q)}(x)$ is continuous in the interval $[a,b]$, $q=0,1,2$, then the interpolation function of the appropriate degree of smoothness converges to the function $f(x)$ on a sequence of meshesat least at the rat $\|\Delta\|^q$, where $\|\Delta\|=\max_i|\Delta x_i|$.
Received: 26.01.1981
Revised: 31.05.1982
English version:
USSR Computational Mathematics and Mathematical Physics, 1983, Volume 23, Issue 2, Pages 20–26
DOI: https://doi.org/10.1016/S0041-5553(83)80042-1
Bibliographic databases:
Document Type: Article
UDC: 519.652
MSC: 41A05
Language: Russian
Citation: I. A. Rumyantsev, “Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature”, Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983), 290–300; U.S.S.R. Comput. Math. Math. Phys., 23:2 (1983), 20–26
Citation in format AMSBIB
\Bibitem{Rum83}
\by I.~A.~Rumyantsev
\paper Local interpolation curve with a prescribed degree of smoothness which preserves the constant sign of curvature
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1983
\vol 23
\issue 2
\pages 290--300
\mathnet{http://mi.mathnet.ru/zvmmf5596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=698216}
\zmath{https://zbmath.org/?q=an:0543.41001}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1983
\vol 23
\issue 2
\pages 20--26
\crossref{https://doi.org/10.1016/S0041-5553(83)80042-1}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf5596
  • https://www.mathnet.ru/eng/zvmmf/v23/i2/p290
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024