Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1983, Volume 23, Number 5, Pages 1230–1233 (Mi zvmmf5561)  

Scientific communications

Optimal approximations in the eigenvalue problem for the Ritz and Bubnov–Galerkin methods

S. N. Kukudzhanov

Tbilisi
Abstract: A method is described for finding the best (in a certain sense) approximations of the eigenvalues for linear operator equations of the type $Au=\lambda Bu$, when they are solved by the Ritz and the Bubnov–Galerkin methods. The problem of optimal approximations is stated thus: given the system of coordinate functions $\{\varphi_n\}$, it is required to find, among all the coordinate elements, the $k$ elements for which the divergence $\delta^{(k)}$ between the exact absolute value of the eigenvalue $|\lambda|$ and its $k$-th approximation $|\lambda^{(k)}|$ is minimal, i. e. $|\lambda^{(k)}|-|\lambda|=\min\delta^{(k)}$.
Received: 25.06.1981
Revised: 07.12.1981
English version:
USSR Computational Mathematics and Mathematical Physics, 1983, Volume 23, Issue 5, Pages 133–136
DOI: https://doi.org/10.1016/S0041-5553(83)80169-4
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: Primary 65J10; Secondary 47A10
Language: Russian
Citation: S. N. Kukudzhanov, “Optimal approximations in the eigenvalue problem for the Ritz and Bubnov–Galerkin methods”, Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983), 1230–1233; U.S.S.R. Comput. Math. Math. Phys., 23:5 (1983), 133–136
Citation in format AMSBIB
\Bibitem{Kuk83}
\by S.~N.~Kukudzhanov
\paper Optimal approximations in the eigenvalue problem for the Ritz and Bubnov--Galerkin methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1983
\vol 23
\issue 5
\pages 1230--1233
\mathnet{http://mi.mathnet.ru/zvmmf5561}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=721800}
\zmath{https://zbmath.org/?q=an:0545.65035}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1983
\vol 23
\issue 5
\pages 133--136
\crossref{https://doi.org/10.1016/S0041-5553(83)80169-4}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf5561
  • https://www.mathnet.ru/eng/zvmmf/v23/i5/p1230
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024