Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 1, Pages 161–171 (Mi zvmmf541)  

This article is cited in 22 scientific papers (total in 22 papers)

Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions

E. B. Terëshin, V. A. Trofimov, M. V. Fedotov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: Conservative finite-difference schemes are constructed for the problems of self-action of a femtosecond laser pulse and of second-harmonic generation in a one-dimensional nonlinear photonic crystal with nonreflecting boundary conditions. The invariants of the governing equations are found taking into account these conditions. Nonreflecting conditions substantially improve the efficiency of conservative finite-difference schemes used in the modeling of complex nonlinear effects in photonic crystals, which require much smaller steps in space and time than those used in the case of linear propagation. The numerical experiments performed show that the boundary reflects no more than 0.01% of the transmitted energy, which corresponds to the truncation error in the boundary conditions. The amplitude of the reflected pulse is less than that of the pulse transmitted through the boundary by two (and more) orders of magnitude. The simulation is based on the approach proposed by the authors for the given class of problems.
Key words: nonreflecting boundary conditions, nonlinear Schrödinger equation, photonic crystal, conservative finite, ifference scheme.
Received: 02.02.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 1, Pages 154–164
DOI: https://doi.org/10.1134/S0965542506010155
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: E. B. Terëshin, V. A. Trofimov, M. V. Fedotov, “Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 161–171; Comput. Math. Math. Phys., 46:1 (2006), 154–164
Citation in format AMSBIB
\Bibitem{TerTroFed06}
\by E.~B.~Ter\"eshin, V.~A.~Trofimov, M.~V.~Fedotov
\paper Conservative finite-difference scheme for the problem of propagation of a~femtosecond pulse in a~nonlinear photonic crystal with nonreflecting boundary conditions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 1
\pages 161--171
\mathnet{http://mi.mathnet.ru/zvmmf541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2239734}
\zmath{https://zbmath.org/?q=an:05200894}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 1
\pages 154--164
\crossref{https://doi.org/10.1134/S0965542506010155}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746034109}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf541
  • https://www.mathnet.ru/eng/zvmmf/v46/i1/p161
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :190
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024