Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 1, Pages 95–101 (Mi zvmmf536)  

Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method

Kh. I. Botashev

State Academy of Agriculture, ul. Tarchokova 1a, Nalchik, Kabardino-Balkariya, 360030, Russia
References:
Abstract: Theorems on the localization of exact solutions are proved for a quasilinear mathematical model describing quasi-periodic processes. Based on these theorems, constructive algorithms are proposed for calculating quasi-periodic solutions with guaranteed accuracy. Quasi-periodic motions play an important role in engineering and physics, where they often represent determining states. Quasi-periodic motions can be found in many ecological, biological, and economic processes.
Key words: system of first-order ordinary differential equations, the case of a small parameter, quasiperiodic solutions, guaranteed accuracy.
Received: 13.05.2005
Revised: 05.08.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 1, Pages 90–96
DOI: https://doi.org/10.1134/S0965542506010106
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: Kh. I. Botashev, “Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 95–101; Comput. Math. Math. Phys., 46:1 (2006), 90–96
Citation in format AMSBIB
\Bibitem{Bot06}
\by Kh.~I.~Botashev
\paper Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 1
\pages 95--101
\mathnet{http://mi.mathnet.ru/zvmmf536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2239729}
\zmath{https://zbmath.org/?q=an:05200889}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 1
\pages 90--96
\crossref{https://doi.org/10.1134/S0965542506010106}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746058583}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf536
  • https://www.mathnet.ru/eng/zvmmf/v46/i1/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :87
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024