Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 1, Pages 37–51 (Mi zvmmf532)  

This article is cited in 12 scientific papers (total in 12 papers)

A method for the asymptotic stabilization to a given trajectory based on the initial data

A. A. Kornev

Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: Let $S$ be an operator in a Banach space $H$ and $S^i(u)$, $i=0,1,\dots,u\in H$ be the evolutionary process specified by $S$. The following problem is considered: for a given point $z_0$ and a given initial condition $a_0$, find a correction l such that the trajectory $\{S^i(a_0+l)\}$ approaches $\{S^i(z_0)\}$ for $0<i<n$. This problem is reduced to projecting $a_0$ on the manifold $\mathscr M^-(z_0,f^{(n)})$ defined in a neighborhood of $z_0$ and specified by a certain function $f^{(n)}$. In this paper, an iterative method is proposed for the construction of the desired correction $u=a_0+l$. The convergence of the method is substantiated, and its efficiency for the blow-up Chafee-Infante equation is verified. A constructive proof of the existence of a locally stable manifold $\mathscr M^-(z_0,f)$ in a neighborhood of a trajectory of hyperbolic type is one of the possible applications of the proposed method. For the points in $\mathscr M^-(z_0,f)$, the value of $n$ can be chosen arbitrarily large.
Key words: generalized Hadamard–Perron theorem, stable manifold, numerical algorithm.
Received: 01.06.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 1, Pages 34–48
DOI: https://doi.org/10.1134/S0965542506010064
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: A. A. Kornev, “A method for the asymptotic stabilization to a given trajectory based on the initial data”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006), 37–51; Comput. Math. Math. Phys., 46:1 (2006), 34–48
Citation in format AMSBIB
\Bibitem{Kor06}
\by A.~A.~Kornev
\paper A~method for the asymptotic stabilization to a~given trajectory based on the initial data
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 1
\pages 37--51
\mathnet{http://mi.mathnet.ru/zvmmf532}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2239725}
\zmath{https://zbmath.org/?q=an:05200885}
\elib{https://elibrary.ru/item.asp?id=9187429}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 1
\pages 34--48
\crossref{https://doi.org/10.1134/S0965542506010064}
\elib{https://elibrary.ru/item.asp?id=13519190}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746053771}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf532
  • https://www.mathnet.ru/eng/zvmmf/v46/i1/p37
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024