Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 3, Pages 473–484 (Mi zvmmf503)  

This article is cited in 8 scientific papers (total in 8 papers)

Smooth volume integral conservation law and method for problems in Lagrangian coordinates

T. Ismagilov

Novosibirsk State University, Novosibirsk, 630090, Russia
References:
Abstract: An integral conservation law is derived for smooth volume in Lagrangian coordinates (a comoving frame). A method for approximation of the integral smooth volume conservation law is discussed. An extension technique is suggested for development of smooth volume schemes. For hyperbolic systems, smooth volume upwind and Godunov schemes with monotonic reconstruction are derived. The schemes are applied to equations of gas dynamics and tested for three gas-dynamics shock tube problems. The solutions are monotonic and precise.
Key words: smooth particle method, smooth volume method, finite volume method, monotonic reconstruction, upwind, Godunov.
Received: 28.02.2005
Revised: 20.05.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 3, Pages 453–464
DOI: https://doi.org/10.1134/S0965542506030110
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: English
Citation: T. Ismagilov, “Smooth volume integral conservation law and method for problems in Lagrangian coordinates”, Zh. Vychisl. Mat. Mat. Fiz., 46:3 (2006), 473–484; Comput. Math. Math. Phys., 46:3 (2006), 453–464
Citation in format AMSBIB
\Bibitem{Ism06}
\by T.~Ismagilov
\paper Smooth volume integral conservation law and method for problems in Lagrangian coordinates
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 3
\pages 473--484
\mathnet{http://mi.mathnet.ru/zvmmf503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2260303}
\zmath{https://zbmath.org/?q=an:05200918}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 3
\pages 453--464
\crossref{https://doi.org/10.1134/S0965542506030110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746097331}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf503
  • https://www.mathnet.ru/eng/zvmmf/v46/i3/p473
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :156
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024