Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 12, Pages 2208–2222 (Mi zvmmf4984)  

This article is cited in 4 scientific papers (total in 4 papers)

Triple-deck theory in transonic flows and boundary layer stability

A. N. Bogdanov, V. N. Diesperov, V. I. Zhuk, A. V. Chernyshev

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia
Full-text PDF (390 kB) Citations (4)
References:
Abstract: An analysis of the lower branch of the neutral curve for the Blasius boundary layer leads to a perturbed velocity field with a triple-deck structure, which is a rather unexpected result. It is the asymptotic treatment of the stability problem that has a rational basis, since it is in the limit of high Reynolds numbers that the basic flow has the form of a boundary layer. The principles for constructing a boundary layer stability theory based on the triple-deck theory are proposed. Although most attention is focused on transonic outer flows, a comparative analysis with the asymptotic theory of boundary layer stability in subsonic flows is given. The parameters of internal waves near the lower branch of the neutral curve are associated with a certain perturbation field pattern. These parameters satisfy dispersion relations derived by solving eigenvalue problems. The dispersion relations are investigated in complex planes.
Key words: triple-deck theory, boundary layer, transonic and subsonic flows, stability, dispersion relation, Airy function, Tollmien–Schlichting wave, spectrum of eigenmodes, increment of growth, phase velocity, wave number, singular parameter.
Received: 31.05.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 12, Pages 2095–2108
DOI: https://doi.org/10.1134/S0965542510120110
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. N. Bogdanov, V. N. Diesperov, V. I. Zhuk, A. V. Chernyshev, “Triple-deck theory in transonic flows and boundary layer stability”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2208–2222; Comput. Math. Math. Phys., 50:12 (2010), 2095–2108
Citation in format AMSBIB
\Bibitem{BogDieZhu10}
\by A.~N.~Bogdanov, V.~N.~Diesperov, V.~I.~Zhuk, A.~V.~Chernyshev
\paper Triple-deck theory in transonic flows and boundary layer stability
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 12
\pages 2208--2222
\mathnet{http://mi.mathnet.ru/zvmmf4984}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.2095B}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 12
\pages 2095--2108
\crossref{https://doi.org/10.1134/S0965542510120110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650602570}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4984
  • https://www.mathnet.ru/eng/zvmmf/v50/i12/p2208
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :159
    References:81
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024