Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 12, Pages 2155–2175 (Mi zvmmf4980)  

This article is cited in 9 scientific papers (total in 9 papers)

Well-posedness of difference schemes for semilinear parabolic equations with weak solutions

P. P. Matusab

a Institute for Mathematics, National Academy of Sciences of Belarys, ul. Surganova 11, Minsk, 220072 Belarus
b Al. Raclawickie 14, 208950 Lublin, Poland, The John Paul II Catholic University of Lublin
Full-text PDF (323 kB) Citations (9)
References:
Abstract: The well-posedness of difference schemes approximating initial-boundary value problem for parabolic equations with a nonlinear power-type source is studied. Simple sufficient conditions on the input data are obtained under which the weak solutions of the differential and difference problems are globally stable for all $0\leq t\leq+\infty$. It is shown that, if the condition fails, the solution can blow up (become infinite) in a finite time. A lower bound for the blow-up time is established. In all the cases, the method of energy inequalities is used as based on the application of the Chaplygin comparison theorem, Bihari-type inequalities, and their difference analogues. A numerical experiment is used to illustrate the theoretical results and verify two-sided blow-up time estimates.
Key words: weak solution, initial-boundary value problem, semilinear parabolic equation, finite-difference scheme, stability, a priori estimates, solution blow-up, method of energy inequalities, Chaplygin comparison theorem.
Received: 02.07.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 12, Pages 2044–2063
DOI: https://doi.org/10.1134/S0965542510120079
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: P. P. Matus, “Well-posedness of difference schemes for semilinear parabolic equations with weak solutions”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2155–2175; Comput. Math. Math. Phys., 50:12 (2010), 2044–2063
Citation in format AMSBIB
\Bibitem{Mat10}
\by P.~P.~Matus
\paper Well-posedness of difference schemes for semilinear parabolic equations with weak solutions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 12
\pages 2155--2175
\mathnet{http://mi.mathnet.ru/zvmmf4980}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.2044M}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 12
\pages 2044--2063
\crossref{https://doi.org/10.1134/S0965542510120079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650617956}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4980
  • https://www.mathnet.ru/eng/zvmmf/v50/i12/p2155
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :154
    References:76
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024