Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 12, Pages 2134–2143 (Mi zvmmf4978)  

This article is cited in 8 scientific papers (total in 8 papers)

Application of a 14-point averaging operator in the grid method

E. A. Volkov

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (245 kB) Citations (8)
References:
Abstract: The Dirichlet problem for Laplace's equation in a rectangular parallelepiped is solved by applying the grid method. A 14-point averaging operator is used to specify the grid equations on the entire grid introduced in the parallelepiped. Given boundary values that are continuous on the parallelepiped edges and have first derivatives satisfying the Lipschitz condition on each parallelepiped face, the resulting discrete solution of the Dirichlet problem converges uniformly and quadratically with respect to the mesh size. Assuming that the boundary values on the faces have fourth derivatives satisfying the Hölder condition and the second derivatives on the edges obey an additional compatibility condition implied by Laplace's equation, the discrete solution has uniform and quartic convergence with respect to the mesh size. The convergence of the method is also analyzed in certain cases when the boundary values are of intermediate smoothness.
Key words: numerical solution of the Dirichlet problem for Laplace's equation, convergence of discrete solutions, rectangular parallelepiped domain, point averaging operator.
Received: 02.07.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 12, Pages 2023–2032
DOI: https://doi.org/10.1134/S0965542510120055
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “Application of a 14-point averaging operator in the grid method”, Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010), 2134–2143; Comput. Math. Math. Phys., 50:12 (2010), 2023–2032
Citation in format AMSBIB
\Bibitem{Vol10}
\by E.~A.~Volkov
\paper Application of a 14-point averaging operator in the grid method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 12
\pages 2134--2143
\mathnet{http://mi.mathnet.ru/zvmmf4978}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.2023V}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 12
\pages 2023--2032
\crossref{https://doi.org/10.1134/S0965542510120055}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650616761}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4978
  • https://www.mathnet.ru/eng/zvmmf/v50/i12/p2134
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :82
    References:79
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024