Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 9, Pages 1640–1668 (Mi zvmmf4938)  

This article is cited in 8 scientific papers (total in 8 papers)

Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity

V. A. Garanzha

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia
Full-text PDF (362 kB) Citations (8)
References:
Abstract: It is shown that the nonstationary finite-deformation thermoelasticity equations in Lagrangian and Eulerian coordinates can be written in a thermodynamically consistent Godunov canonical form satisfying the Friedrichs hyperbolicity conditions, provided that the elastic potential is a convex function of entropy and of the minors of the elastic deformation Jacobian matrix. In other words, the elastic potential is assumed to be polyconvex in the sense of Ball. It is well known that Ball’s approach to proving the existence and invertibility of stationary elastic deformations assumes that the elastic potential essentially depends on the second-order minors of the Jacobian matrix (i.e., on the cofactor matrix). However, elastic potentials constructed as approximations of rheological laws for actual materials generally do not satisfy this requirement. Instead, they may depend, for example, only on the first-order minors (i.e., the matrix elements) and on the Jacobian determinant. A method for constructing and regularizing polyconvex elastic potentials is proposed that does not require an explicit dependence on the cofactor matrix. It guarantees that the elastic deformations are quasiisometries and preserves the Lame constants of the elastic material.
Key words: elasticity equations, polyconvexity, entropy solutions, quasi-isometric mappings.
Received: 28.12.2009
Revised: 27.04.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 9, Pages 1561–1587
DOI: https://doi.org/10.1134/S0965542510090095
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: V. A. Garanzha, “Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity”, Zh. Vychisl. Mat. Mat. Fiz., 50:9 (2010), 1640–1668; Comput. Math. Math. Phys., 50:9 (2010), 1561–1587
Citation in format AMSBIB
\Bibitem{Gar10}
\by V.~A.~Garanzha
\paper Polyconvex potentials, invertible deformations, and a thermodynamically consistent formulation of the equations of the nonlinear theory of elasticity
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 9
\pages 1640--1668
\mathnet{http://mi.mathnet.ru/zvmmf4938}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760642}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1561G}
\elib{https://elibrary.ru/item.asp?id=15241673}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 9
\pages 1561--1587
\crossref{https://doi.org/10.1134/S0965542510090095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282212600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957106382}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4938
  • https://www.mathnet.ru/eng/zvmmf/v50/i9/p1640
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :184
    References:75
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024