Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 9, Pages 1569–1586 (Mi zvmmf4932)  

Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations

F. M. Namazov, K. I. Khudaverdiev

Faculty of Mechanics and Mathematics, Baku State University, ul. Z. Khalilova 23, Baku, AZ1148 Azerbaijan
References:
Abstract: Many problems in mathematical physics are reduced to one- or multidimensional initial and initial-boundary value problems for, generally speaking, strongly nonlinear Sobolev-type equations. In this work, local and global classical solvability is studied for the one-dimensional mixed problem with homogeneous Riquier-type boundary conditions for a class of semilinear long-wave equations {\footnotesize
$$ U_{tt}(t, x)-U_{xx}(t, x)-\alpha U_{ttxx}(t, x)=F(t, x, U(t, x), U_x(t, x), U_{xx}(t, x), U_t(t, x), U_{tx}(t, x), U_{txx}(t, x)), $$
} where $\alpha>0$ is a fixed number, $0\leq t\leq T$, $0\leq x\leq\pi$, $0<T<+\infty$, $F$ is a given function, and $U(t, x)$ is the sought function. A uniqueness theorem for the mixed problem is proved using the Gronwall–Bellman inequality. A local existence result is proved by applying the generalized contraction mapping principle combined with the Schauder fixed point theorem. The method of a priori estimates is used to prove the global existence of a classical solution to the mixed problem.
Key words: long-wave equation, mixed problem, classical solution, local existence, global existence, fixed point principles, method of a priori estimates.
Received: 16.11.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 9, Pages 1494–1510
DOI: https://doi.org/10.1134/S0965542510090034
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: F. M. Namazov, K. I. Khudaverdiev, “Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations”, Zh. Vychisl. Mat. Mat. Fiz., 50:9 (2010), 1569–1586; Comput. Math. Math. Phys., 50:9 (2010), 1494–1510
Citation in format AMSBIB
\Bibitem{NamKhu10}
\by F.~M.~Namazov, K.~I.~Khudaverdiev
\paper Investigation of the classical solution of a one-dimensional mixed problem for a class of semilinear long-wave equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 9
\pages 1569--1586
\mathnet{http://mi.mathnet.ru/zvmmf4932}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760636}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1494N}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 9
\pages 1494--1510
\crossref{https://doi.org/10.1134/S0965542510090034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282212600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957154676}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4932
  • https://www.mathnet.ru/eng/zvmmf/v50/i9/p1569
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :112
    References:54
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024