Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 9, Pages 1550–1568 (Mi zvmmf4931)  

This article is cited in 5 scientific papers (total in 5 papers)

Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems

I. A. Blatov, N. V. Dobrobog

Volga State University of Telecommunications and Informatics, Moskovskoe sh. 77, Samara, 443090 Russia
Full-text PDF (307 kB) Citations (5)
References:
Abstract: The boundary value problem for the ordinary differential equation of reaction-diffusion on the interval $[-1, 1]$ is examined. The highest derivative in this equation appears with a small parameter $\varepsilon^2$ ($\varepsilon\in (0, 1]$). As the small parameter approaches zero, boundary layers arise in the neighborhood of the interval endpoints. An algorithm for the construction of a posteriori adaptive piecewise uniform grids is proposed. In the adaptation process, the edges of the boundary layers are located more accurately and the grid on the boundary layers is repeatedly refined. To find an approximate solution, the finite element method is used. The sequence of grids constructed by the algorithm is shown to converge "conditionally $\varepsilon$-uniformly" to some limit partition for which the error estimate $O(N^{-2}\ln^3N)$ is proved. The main results are obtained under the assumption that $\varepsilon\ll N^{-1}$, where $N$ is number of grid nodes; thus, conditional $\varepsilon$-uniform convergence is dealt with. The proofs use the Galerkin projector and its property to be quasi-optimal.
Key words: singular perturbations, ordinary differential equation of reaction-diffusion, piecewise uniform grid, a posteriori adaptive grid, conditional $\varepsilon$-uniform convergence, Galerkin projector, quasi-optimality of Galerkin projector.
Received: 11.09.2009
Revised: 21.04.2010
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 9, Pages 1476–1493
DOI: https://doi.org/10.1134/S0965542510090022
Bibliographic databases:
Document Type: Article
UDC: 519.624.2
Language: Russian
Citation: I. A. Blatov, N. V. Dobrobog, “Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems”, Zh. Vychisl. Mat. Mat. Fiz., 50:9 (2010), 1550–1568; Comput. Math. Math. Phys., 50:9 (2010), 1476–1493
Citation in format AMSBIB
\Bibitem{BlaDob10}
\by I.~A.~Blatov, N.~V.~Dobrobog
\paper Conditional $\varepsilon$-uniform convergence of adaptation algorithms in the finite element method for singularly perturbed problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 9
\pages 1550--1568
\mathnet{http://mi.mathnet.ru/zvmmf4931}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760635}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1476B}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 9
\pages 1476--1493
\crossref{https://doi.org/10.1134/S0965542510090022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282212600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957111505}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4931
  • https://www.mathnet.ru/eng/zvmmf/v50/i9/p1550
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:623
    Full-text PDF :234
    References:67
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024