Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 6, Pages 1060–1077 (Mi zvmmf4891)  

This article is cited in 4 scientific papers (total in 4 papers)

On the automatic control of step size and order in one-step collocation methods with higher derivatives

G. Yu. Kulikova, E. Yu. Khrustalëvab

a CEMAT, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
b Faculty of Mathematics and Mechanics, Ul'yanovsk State University, ul. L. Tolstogo 42, Ul'yanovsk, 432970 Russia
Full-text PDF (522 kB) Citations (4)
References:
Abstract: On the basis of symmetric E-methods with higher derivatives having the convergence order four, six, or eight, implicit extrapolation schemes are constructed for the numerical solution of ordinary differential equations. The combined step size and order control used in these schemes implements an automatic global error control in the extrapolation E-methods, which makes it possible to solve differential problems in automatic mode up to the accuracy specified by the user (without taking into account round-off errors). The theory of adjoint and symmetric methods presented in this paper is an extension of the results that are well known for the conventional Runge-Kutta schemes to methods involving higher derivatives. Since the implicit extrapolation based on multi-stage Runge-Kutta methods can be very time consuming, special emphasis is made on the efficiency of calculations. All the theoretical conclusions of this paper are confirmed by the numerical results obtained for test problems.
Key words: numerical methods for solving ordinary differential equations, $\mathrm{E}$-methods with higher derivatives Runge-Kutta methods with higher derivatives automatic step size and order control, one-step collocation methods.
Received: 29.07.2009
Revised: 09.11.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 6, Pages 1006–1023
DOI: https://doi.org/10.1134/S0965542510060084
Bibliographic databases:
Document Type: Article
UDC: 519.624
Language: Russian
Citation: G. Yu. Kulikov, E. Yu. Khrustalëva, “On the automatic control of step size and order in one-step collocation methods with higher derivatives”, Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010), 1060–1077; Comput. Math. Math. Phys., 50:6 (2010), 1006–1023
Citation in format AMSBIB
\Bibitem{KulKhr10}
\by G.~Yu.~Kulikov, E.~Yu.~Khrustal\"eva
\paper On the automatic control of step size and order in one-step collocation methods with higher derivatives
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 6
\pages 1060--1077
\mathnet{http://mi.mathnet.ru/zvmmf4891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2744674}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1006K}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 6
\pages 1006--1023
\crossref{https://doi.org/10.1134/S0965542510060084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279192900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954051459}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4891
  • https://www.mathnet.ru/eng/zvmmf/v50/i6/p1060
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :121
    References:65
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024