Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 6, Pages 1023–1037 (Mi zvmmf4888)  

This article is cited in 3 scientific papers (total in 3 papers)

A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem

A. V. Razgulin

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992 Russia
Full-text PDF (285 kB) Citations (3)
References:
Abstract: A new technique is proposed for analyzing the convergence of a projection difference scheme as applied to the initial value problem for a linear parabolic operator-differential equation. The technique is based on discrete analogues of weighted estimates reflecting the smoothing property of solutions to the differential problem for $t>0$. Under certain conditions on the right-hand side, a new convergence rate estimate of order $O(\sqrt{\tau}+h)$ is obtained in a weighted energy norm without making any a priori assumptions on the additional smoothness of weak solutions. The technique leads to a natural projection difference approximation of the problem of controlling nonsmooth initial data. The convergence rate estimate obtained for the approximating control problems is of the same order $O(\sqrt{\tau}+h)$ as for the projection difference scheme.
Key words: projection difference scheme, parabolic equation, convergence rate, control problem, convergence with respect to functional.
Received: 24.12.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 6, Pages 969–983
DOI: https://doi.org/10.1134/S0965542510060059
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: A. V. Razgulin, “A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem”, Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010), 1023–1037; Comput. Math. Math. Phys., 50:6 (2010), 969–983
Citation in format AMSBIB
\Bibitem{Raz10}
\by A.~V.~Razgulin
\paper A weighted estimate for the rate of convergence of a projection-difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 6
\pages 1023--1037
\mathnet{http://mi.mathnet.ru/zvmmf4888}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2744671}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..969R}
\elib{https://elibrary.ru/item.asp?id=15108566}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 6
\pages 969--983
\crossref{https://doi.org/10.1134/S0965542510060059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279192900005}
\elib{https://elibrary.ru/item.asp?id=15328775}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954037069}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4888
  • https://www.mathnet.ru/eng/zvmmf/v50/i6/p1023
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024