Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 6, Pages 979–998 (Mi zvmmf4884)  

This article is cited in 11 scientific papers (total in 11 papers)

The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors

V. A. Kazeev, E. E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moskow, 119333 Russia
References:
Abstract: A tensor given by its canonical decomposition is approximated by another tensor (again, in the canonical decomposition) of fixed lower rank. For this problem, the structure of the Hessian matrix of the objective function is analyzed. It is shown that all the auxiliary matrices needed for constructing the quadratic model can be calculated so that the computational effort is a quadratic function of the tensor dimensionality (rather than a cubic function as in earlier publications). An economical version of the trust region Newton method is proposed in which the structure of the Hessian matrix is efficiently used for multiplying this matrix by vectors and for scaling the trust region. At each step, the subproblem of minimizing the quadratic model in the trust region is solved using the preconditioned conjugate gradient method, which is terminated if a negative curvature direction is detected for the Hessian matrix.
Key words: tensor decompositions, canonical decomposition, low-rank approximations, trust region Newton method, conjugate gradient method.
Received: 17.12.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 6, Pages 927–945
DOI: https://doi.org/10.1134/S0965542510060011
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: V. A. Kazeev, E. E. Tyrtyshnikov, “The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors”, Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010), 979–998; Comput. Math. Math. Phys., 50:6 (2010), 927–945
Citation in format AMSBIB
\Bibitem{KazTyr10}
\by V.~A.~Kazeev, E.~E.~Tyrtyshnikov
\paper The structure of the Hessian and the efficient implementation of Newton's method in the problem of the canonical approximation of tensors
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 6
\pages 979--998
\mathnet{http://mi.mathnet.ru/zvmmf4884}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2744667}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..927K}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 6
\pages 927--945
\crossref{https://doi.org/10.1134/S0965542510060011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279192900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954072168}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4884
  • https://www.mathnet.ru/eng/zvmmf/v50/i6/p979
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:560
    Full-text PDF :299
    References:80
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024