|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 5, Pages 876–893
(Mi zvmmf4877)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Solution blow-up for a new stationary Sobolev-type equation
M. O. Korpusov, A. G. Sveshnikov Faculty of Physics, Moscow State University, Moscow, 119992 Russia
Abstract:
A new nonlinear stationary Sobolev-type equation with a parameter $\eta\in\mathbb{R}^1$ is derived. For $\eta>0$, global solvability in the weak generalized sense is proved in the entire waveguide $\mathbb{S}\otimes\mathbb{R}_+^1$. For $\eta<0$, the strong generalized solution is shown to blow up in a certain waveguide cross section $z=R_0>0$. An upper bound for $R_0$ in terms of the original parameters of the problem is obtained.
Key words:
new stationary Sobolev-type equations, existence and blow-up conditions for strong generalized solutions, waveguide theory.
Received: 30.11.2009
Citation:
M. O. Korpusov, A. G. Sveshnikov, “Solution blow-up for a new stationary Sobolev-type equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010), 876–893; Comput. Math. Math. Phys., 50:5 (2010), 831–847
Linking options:
https://www.mathnet.ru/eng/zvmmf4877 https://www.mathnet.ru/eng/zvmmf/v50/i5/p876
|
|