Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 5, Pages 787–804 (Mi zvmmf4870)  

This article is cited in 6 scientific papers (total in 6 papers)

Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case

O. S. Lebedeva

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992 Russia
Full-text PDF (341 kB) Citations (6)
References:
Abstract: A method for solving a partial algebraic eigenvalues problem is constructed. It exploits tensor structure of eigenvectors in two-dimensional case. For a symmetric matrix represented in tensor format, the method finds low-rank approximations to the eigenvectors corresponding to the smallest eigenvalues. For sparse matrices, execution time and required memory for the proposed method are proportional to the square root of miscellaneous overall number of unknowns, whereas this dependence is usually linear. To maintain tensor structure of vectors at each iteration step, low-rank approximations are performed, which introduces errors into the original method. Nevertheless, the new method was proved to converge. Convergence rate estimates are obtained for various tensor modifications of the abstract one-step method. It is shown how the convergence of a multistep method can be derived from the convergence of the corresponding one-step method. Several modifications of the method with an low-rank approximation techniques were implemented on the basis of the block conjugate gradient method. Their performance is compared on numerical examples.
Key words: low-parametric representations, low-rank matrices, methods for calculating small eigenvalues, block conjugate gradient method.
Received: 17.11.2009
Revised: 21.12.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 5, Pages 749–765
DOI: https://doi.org/10.1134/S0965542510050015
Bibliographic databases:
Document Type: Article
UDC: 519.614
Language: Russian
Citation: O. S. Lebedeva, “Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case”, Zh. Vychisl. Mat. Mat. Fiz., 50:5 (2010), 787–804; Comput. Math. Math. Phys., 50:5 (2010), 749–765
Citation in format AMSBIB
\Bibitem{Leb10}
\by O.~S.~Lebedeva
\paper Block tensor conjugate gradient-type method for Rayleigh quotient minimization in two-dimensional case
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 5
\pages 787--804
\mathnet{http://mi.mathnet.ru/zvmmf4870}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..749L}
\elib{https://elibrary.ru/item.asp?id=15108548}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 5
\pages 749--765
\crossref{https://doi.org/10.1134/S0965542510050015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279192400001}
\elib{https://elibrary.ru/item.asp?id=15321623}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952874303}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4870
  • https://www.mathnet.ru/eng/zvmmf/v50/i5/p787
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025