Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 4, Pages 770–783 (Mi zvmmf4868)  

This article is cited in 5 scientific papers (total in 5 papers)

Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions

D. P. Vetrova, D. A. Kropotovb, A. A. Osokina

a Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (296 kB) Citations (5)
References:
Abstract: The classical EM algorithm for the restoration of the mixture of normal probability distributions cannot determine the number of components in the mixture. An algorithm called ARD EM for the automatic determination of the number of components is proposed, which is based on the relevance vector machine. The idea behind this algorithm is to use a redundant number of mixture components at the first stage and then determine the relevant components by maximizing the evidence. Experiments with model problems show that the number of clusters thus determined either coincides with the actual number or slightly exceeds it. In addition, clusterization using ARD EM turns out to be closer to the actual clusterization than that obtained by the analogs based on cross validation and the minimum description length principle.
Key words: pattern recognition, probability density restoration, cluster analysis, determination of the number of clusters, EM algorithm, Bayesian learning, automatic relevance determination.
Received: 24.07.2009
Revised: 11.11.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 4, Pages 733–746
DOI: https://doi.org/10.1134/S0965542510040147
Bibliographic databases:
Document Type: Article
UDC: 519.6:519.7
Language: Russian
Citation: D. P. Vetrov, D. A. Kropotov, A. A. Osokin, “Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 770–783; Comput. Math. Math. Phys., 50:4 (2010), 733–746
Citation in format AMSBIB
\Bibitem{VetKroOso10}
\by D.~P.~Vetrov, D.~A.~Kropotov, A.~A.~Osokin
\paper Automatic determination of the numbers of components in the EM algorithm for the restoration of a mixture of normal distributions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 4
\pages 770--783
\mathnet{http://mi.mathnet.ru/zvmmf4868}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761711}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..733V}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 4
\pages 733--746
\crossref{https://doi.org/10.1134/S0965542510040147}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337600014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952182030}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4868
  • https://www.mathnet.ru/eng/zvmmf/v50/i4/p770
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024