Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 4, Pages 725–745 (Mi zvmmf4865)  

This article is cited in 2 scientific papers (total in 2 papers)

Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation

A. V. Kazeĭkina

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
Full-text PDF (334 kB) Citations (2)
References:
Abstract: The asymptotic behavior of the solution to the Cauchy problem for the Korteweg–de Vries–Burgers equation $u_t+(f(u))_x+au_{xxx}-bu_{xx}=0$ as $t\to\infty$ is analyzed. Sufficient conditions for the existence and local stability of a traveling-wave solution known in the case of $f(u)=u^2$ are extended to the case of an arbitrary sufficiently smooth convex function $f(u)$.
Key words: Korteweg–de Vries–Burgers equation, traveling-wave solution, asymptotic behavior of the Cauchy problem solution.
Received: 26.11.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 4, Pages 690–710
DOI: https://doi.org/10.1134/S0965542510040111
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. V. Kazeǐkina, “Stability of a traveling-wave solution of the Cauchy problem for the Korteweg–de Vries–Burgers equation”, Zh. Vychisl. Mat. Mat. Fiz., 50:4 (2010), 725–745; Comput. Math. Math. Phys., 50:4 (2010), 690–710
Citation in format AMSBIB
\Bibitem{Kaz10}
\by A.~V.~Kaze{\v\i}kina
\paper Stability of a traveling-wave solution of the Cauchy problem for the Korteweg--de Vries--Burgers equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 4
\pages 725--745
\mathnet{http://mi.mathnet.ru/zvmmf4865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2761709}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..690K}
\elib{https://elibrary.ru/item.asp?id=13726046}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 4
\pages 690--710
\crossref{https://doi.org/10.1134/S0965542510040111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337600011}
\elib{https://elibrary.ru/item.asp?id=15334108}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952218709}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4865
  • https://www.mathnet.ru/eng/zvmmf/v50/i4/p725
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:431
    Full-text PDF :201
    References:52
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024