Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 3, Pages 449–457 (Mi zvmmf4842)  

This article is cited in 6 scientific papers (total in 6 papers)

Regularized additive operator-difference schemes

P. N. Vabishchevich

Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moskow, 125047 Russia
Full-text PDF (211 kB) Citations (6)
References:
Abstract: The construction of additive operator-difference (splitting) schemes for the approximate solution Cauchy problem for the first-order evolutionary equation is considered. Unconditionally stable additive schemes are constructed on the basis of the Samarskii regularization principle for operator-difference schemes. In the case of arbitrary multicomponent splitting, these schemes belong to the class of additive full approximation schemes. Regularized additive operator-difference schemes for evolutionary problems are constructed without the assumption that the regularizing operator and the operator of the problem are commutable. Regularized additive schemes with double multiplicative perturbation of the additive terms of the problem’s operator are proposed. The possibility of using factorized multicomponent splitting schemes, which can be used for the approximate solution of steadystate problems (finite difference relaxation schemes) are discussed. Some possibilities of extending the proposed regularized additive schemes to other problems are considered.
Key words: first-order evolutionary equation, operator-difference schemes, stability, additive schemes, regularization of finite difference schemes.
Received: 16.07.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 3, Pages 428–436
DOI: https://doi.org/10.1134/S096554251003005X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. N. Vabishchevich, “Regularized additive operator-difference schemes”, Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010), 449–457; Comput. Math. Math. Phys., 50:3 (2010), 428–436
Citation in format AMSBIB
\Bibitem{Vab10}
\by P.~N.~Vabishchevich
\paper Regularized additive operator-difference schemes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 3
\pages 449--457
\mathnet{http://mi.mathnet.ru/zvmmf4842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681922}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..428V}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 3
\pages 428--436
\crossref{https://doi.org/10.1134/S096554251003005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277337300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951831905}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4842
  • https://www.mathnet.ru/eng/zvmmf/v50/i3/p449
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024