Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 2, Pages 286–297 (Mi zvmmf4828)  

This article is cited in 4 scientific papers (total in 4 papers)

A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped

E. A. Volkov

Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moskow, 119991 Russia
Full-text PDF (246 kB) Citations (4)
References:
Abstract: A modified combined grid method is proposed for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. The six-point averaging operator is applied at next-to-the-boundary grid points, while the 18-point averaging operator is used instead of the 26-point one at the remaining grid points. Assuming that the boundary values given on the faces have fourth derivatives satisfying the Hölder condition, the boundary values on the edges are continuous, and their second derivatives obey a matching condition implied by the Laplace equation, the grid solution is proved to converge uniformly with the fourth order with respect to the mesh size.
Key words: numerical solution of the Dirichlet problem for Laplace’s equation, convergence of grid solutions, rectangular parallelepipedal domain.
Received: 24.07.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 2, Pages 274–284
DOI: https://doi.org/10.1134/S0965542510020090
Bibliographic databases:
Document Type: Article
UDC: 519.633.2
Language: Russian
Citation: E. A. Volkov, “A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Zh. Vychisl. Mat. Mat. Fiz., 50:2 (2010), 286–297; Comput. Math. Math. Phys., 50:2 (2010), 274–284
Citation in format AMSBIB
\Bibitem{Vol10}
\by E.~A.~Volkov
\paper A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 2
\pages 286--297
\mathnet{http://mi.mathnet.ru/zvmmf4828}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681154}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50..274V}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 2
\pages 274--284
\crossref{https://doi.org/10.1134/S0965542510020090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277336800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950478395}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4828
  • https://www.mathnet.ru/eng/zvmmf/v50/i2/p286
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :102
    References:66
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024