|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 1, Pages 131–145
(Mi zvmmf4816)
|
|
|
|
This article is cited in 19 scientific papers (total in 19 papers)
Hessian-free metric-based mesh adaptation via geometry of interpolation error
A. Agouzala, K. N. Lipnikovb, Yu. V. Vassilevskic a Université de Lyon 1, Laboratoire d’Analyse Numerique 43, Bd du 11 Novembre 1918, Villeurbanne Cedex, France
b Los Alamos National Laboratory, Theoretical Division MS-B284, Los Alamos, NM 87545, USA
c Institute of Numerical Mathematics of the Russian Academy of Sciences Gubkina 8, Moscow, 119333, Russia
Abstract:
The article presents analysis of a new methodology for generating meshes minimizing $L^p$-norms of the interpolation error or its gradient, $p>0$. The key element of the methodology is the construction of a metric from node-based and edge-based values of a given function. For a mesh with $N_h$ triangles, we demonstrate numerically that $L^\infty$-norm of the interpolation error is proportional to $N_h^{-1}$ and $L^\infty$-norm of the gradient of the interpolation error is proportional to $N_h^{-1/2}$. The methodology can be applied to adaptive solution of PDEs provided that edge-based a posteriori error estimates are available.
Key words:
optimal mesh, interpolation error, metric based adaptation.
Received: 18.11.2008 Revised: 27.07.2009
Citation:
A. Agouzal, K. N. Lipnikov, Yu. V. Vassilevski, “Hessian-free metric-based mesh adaptation via geometry of interpolation error”, Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010), 131–145; Comput. Math. Math. Phys., 50:1 (2010), 124–138
Linking options:
https://www.mathnet.ru/eng/zvmmf4816 https://www.mathnet.ru/eng/zvmmf/v50/i1/p131
|
Statistics & downloads: |
Abstract page: | 475 | Full-text PDF : | 136 | References: | 77 | First page: | 5 |
|