Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2010, Volume 50, Number 1, Pages 131–145 (Mi zvmmf4816)  

This article is cited in 19 scientific papers (total in 19 papers)

Hessian-free metric-based mesh adaptation via geometry of interpolation error

A. Agouzala, K. N. Lipnikovb, Yu. V. Vassilevskic

a Université de Lyon 1, Laboratoire d’Analyse Numerique 43, Bd du 11 Novembre 1918, Villeurbanne Cedex, France
b Los Alamos National Laboratory, Theoretical Division MS-B284, Los Alamos, NM 87545, USA
c Institute of Numerical Mathematics of the Russian Academy of Sciences Gubkina 8, Moscow, 119333, Russia
References:
Abstract: The article presents analysis of a new methodology for generating meshes minimizing $L^p$-norms of the interpolation error or its gradient, $p>0$. The key element of the methodology is the construction of a metric from node-based and edge-based values of a given function. For a mesh with $N_h$ triangles, we demonstrate numerically that $L^\infty$-norm of the interpolation error is proportional to $N_h^{-1}$ and $L^\infty$-norm of the gradient of the interpolation error is proportional to $N_h^{-1/2}$. The methodology can be applied to adaptive solution of PDEs provided that edge-based a posteriori error estimates are available.
Key words: optimal mesh, interpolation error, metric based adaptation.
Received: 18.11.2008
Revised: 27.07.2009
English version:
Computational Mathematics and Mathematical Physics, 2010, Volume 50, Issue 1, Pages 124–138
DOI: https://doi.org/10.1134/S0965542510010112
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: A. Agouzal, K. N. Lipnikov, Yu. V. Vassilevski, “Hessian-free metric-based mesh adaptation via geometry of interpolation error”, Zh. Vychisl. Mat. Mat. Fiz., 50:1 (2010), 131–145; Comput. Math. Math. Phys., 50:1 (2010), 124–138
Citation in format AMSBIB
\Bibitem{AgoLipVas10}
\by A.~Agouzal, K.~N.~Lipnikov, Yu.~V.~Vassilevski
\paper Hessian-free metric-based mesh adaptation via geometry of interpolation error
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2010
\vol 50
\issue 1
\pages 131--145
\mathnet{http://mi.mathnet.ru/zvmmf4816}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681139}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 1
\pages 124--138
\crossref{https://doi.org/10.1134/S0965542510010112}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649112456}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4816
  • https://www.mathnet.ru/eng/zvmmf/v50/i1/p131
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:475
    Full-text PDF :136
    References:77
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024