Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 11, Pages 2066–2080 (Mi zvmmf4790)  

This article is cited in 2 scientific papers (total in 2 papers)

An efficient method for feature selection in linear regression based on an extended Akaike's information criterion

D. P. Vetrova, D. A. Kropotovb, N. O. Ptashkoa

a Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
References:
Abstract: A method for feature selection in linear regression based on an extension of Akaike's information criterion is proposed. The use of classical Akaike's information criterion (AIC) for feature selection assumes the exhaustive search through all the subsets of features, which has unreasonably high computational and time cost. A new information criterion is proposed that is a continuous extension of AIC. As a result, the feature selection problem is reduced to a smooth optimization problem. An efficient procedure for solving this problem is derived. Experiments show that the proposed method enables one to efficiently select features in linear regression. In the experiments, the proposed procedure is compared with the relevance vector machine, which is a feature selection method based on Bayesian approach. It is shown that both procedures yield similar results. The main distinction of the proposed method is that certain regularization coefficients are identical zeros. This makes it possible to avoid the underfitting effect, which is a characteristic feature of the relevance vector machine. A special case (the so-called nondiagonal regularization) is considered in which both methods are identical.
Key words: pattern recognition, linear regression, feature selection, Akaike's information criterion.
Received: 12.05.2009
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 11, Pages 1972–1985
DOI: https://doi.org/10.1134/S096554250911013X
Bibliographic databases:
Document Type: Article
UDC: 519.71
Language: Russian
Citation: D. P. Vetrov, D. A. Kropotov, N. O. Ptashko, “An efficient method for feature selection in linear regression based on an extended Akaike's information criterion”, Zh. Vychisl. Mat. Mat. Fiz., 49:11 (2009), 2066–2080; Comput. Math. Math. Phys., 49:11 (2009), 1972–1985
Citation in format AMSBIB
\Bibitem{VetKroPta09}
\by D.~P.~Vetrov, D.~A.~Kropotov, N.~O.~Ptashko
\paper An efficient method for feature selection in linear regression based on an extended Akaike's information criterion
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 11
\pages 2066--2080
\mathnet{http://mi.mathnet.ru/zvmmf4790}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 11
\pages 1972--1985
\crossref{https://doi.org/10.1134/S096554250911013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272464100013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71549127461}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4790
  • https://www.mathnet.ru/eng/zvmmf/v49/i11/p2066
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:760
    Full-text PDF :370
    References:77
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024