Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 10, Pages 1812–1826 (Mi zvmmf4771)  

This article is cited in 1 scientific paper (total in 1 paper)

Dynamic effects associated with spatial discretization of nonlinear wave equations

A. Yu. Kolesova, N. Kh. Rozovb

a Faculty of Mathematics, Yaroslavl State University, Sovetskaya ul. 14, Yaroslavl, 150000, Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991, Russia
References:
Abstract: A new phenomenon is detected that the attractors of a nonlinear wave equation can differ substantially from those of its finite-dimensional analogue obtained by replacing the spatial derivatives with corresponding difference operators (regardless of the discretization step). The presentation is based on a typical example, namely, on the boundary value problem for a Van-der-Pol-type telegraph equation with zero Neumann conditions at the ends of the unit interval. Under certain generic conditions, the problem is shown to admit only stable time-periodic motions, which are fairly numerous. When the problem is replaced by an approximating system of ordinary differential equations, the situation becomes fundamentally different: all the periodic motions (except for one or two) become unstable and, instead of them, stable two-dimensional invariant tori appear.
Key words: nonlinear telegraph equation, discretization, periodic motion, invariant torus, attractor.
Received: 11.03.2009
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 10, Pages 1733–1747
DOI: https://doi.org/10.1134/S096554250910008X
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “Dynamic effects associated with spatial discretization of nonlinear wave equations”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1812–1826; Comput. Math. Math. Phys., 49:10 (2009), 1733–1747
Citation in format AMSBIB
\Bibitem{KolRoz09}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper Dynamic effects associated with spatial discretization of nonlinear wave equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 10
\pages 1812--1826
\mathnet{http://mi.mathnet.ru/zvmmf4771}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 10
\pages 1733--1747
\crossref{https://doi.org/10.1134/S096554250910008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270979900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76349091328}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4771
  • https://www.mathnet.ru/eng/zvmmf/v49/i10/p1812
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024