Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 10, Pages 1741–1756 (Mi zvmmf4765)  

This article is cited in 5 scientific papers (total in 5 papers)

Approximate multiplication of tensor matrices based on the individual filtering of factors

D. V. Savostyanov, E. E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia
References:
Abstract: Algorithms are proposed for the approximate calculation of the matrix product $\tilde{\mathbf C}\approx\mathbf C=\mathbf A\cdot\mathbf B$, where the matrices $\mathbf A$ and $\mathbf B$ are given by their tensor decompositions in either canonical or Tucker format of rank $r$. The matrix $\mathbf C$ is not calculated as a full array; instead, it is first represented by a similar decomposition with a redundant rank and is then reapproximated (compressed) within the prescribed accuracy to reduce the rank. The available reapproximation algorithms as applied to the above problem require that an array containing $r^{2d}$ elements be stored, where d is the dimension of the corresponding space. Due to the memory and speed limitations, these algorithms are inapplicable even for the typical values $d=3$ and $r\sim30$. In this paper, methods are proposed that approximate the mode factors of $\mathbf C$ using individually chosen accuracy criteria. As an application, the three-dimensional Coulomb potential is calculated. It is shown that the proposed methods are efficient if r can be as large as several hundreds and the reapproximation (compression) of $\mathbf C$ has low complexity compared to the preliminary calculation of the factors in the tensor decomposition of $\mathbf C$ with a edundant rank.
Key words: multidimensional arrays, ultidimensional operators, low-parameter representations, canonical decomposition, Tucker decomposition, skeleton approximation, low-rank matrices, data compression, fast recompression, Coulomb potential.
Received: 10.03.2009
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 10, Pages 1662–1677
DOI: https://doi.org/10.1134/S0965542509100029
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: D. V. Savostyanov, E. E. Tyrtyshnikov, “Approximate multiplication of tensor matrices based on the individual filtering of factors”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1741–1756; Comput. Math. Math. Phys., 49:10 (2009), 1662–1677
Citation in format AMSBIB
\Bibitem{SavTyr09}
\by D.~V.~Savostyanov, E.~E.~Tyrtyshnikov
\paper Approximate multiplication of tensor matrices based on the individual filtering of factors
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 10
\pages 1741--1756
\mathnet{http://mi.mathnet.ru/zvmmf4765}
\elib{https://elibrary.ru/item.asp?id=12902195}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 10
\pages 1662--1677
\crossref{https://doi.org/10.1134/S0965542509100029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270979900002}
\elib{https://elibrary.ru/item.asp?id=15299656}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76349097551}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4765
  • https://www.mathnet.ru/eng/zvmmf/v49/i10/p1741
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:628
    Full-text PDF :315
    References:69
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024