|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 8, Pages 1385–1398
(Mi zvmmf4733)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the numerical solution of the linear complementarity problem
E. O. Mazurkevicha, E. G. Petrovab, A. S. Strekalovskiib a Institute of Problems of Information Science, Tatarstan Academy of Sciences, ul. Chekhova 36, Kazan, 420012, Russia
b Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, ul. Lermontova 134, Irkutsk, 664033, Russia
Abstract:
The well-known linear complementarity problem with definite matrices is considered. It is proposed to solve it using a global optimization algorithm in which one of the basic stages is a special local search. The proposed global search algorithm is tested using a variety of randomly generated problems; a detailed analysis of the computational experiment is given.
Key words:
linear complementarity problem, nonconvex problem, d.c. function, global and local search.
Received: 19.01.2008 Revised: 26.05.2009
Citation:
E. O. Mazurkevich, E. G. Petrova, A. S. Strekalovskii, “On the numerical solution of the linear complementarity problem”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1385–1398; Comput. Math. Math. Phys., 49:8 (2009), 1318–1331
Linking options:
https://www.mathnet.ru/eng/zvmmf4733 https://www.mathnet.ru/eng/zvmmf/v49/i8/p1385
|
Statistics & downloads: |
Abstract page: | 542 | Full-text PDF : | 336 | References: | 60 | First page: | 8 |
|