|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 8, Pages 1364–1368
(Mi zvmmf4731)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$
V. A. Abilova, M. K. Kerimovb a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Abstract:
Sharp estimates are obtained for the convergence rate of double Fourier series in terms of general orthogonal polynomials in some classes of functions and for the Kolmogorov $N$-widths of these classes. These results find applications in numerical analysis.
Key words:
orthogonal polynomials, double Fourier series, generalized modulus of continuity, Kolmogorov $N$-width, convergence rate estimate for double Fourier series.
Received: 03.02.2009
Citation:
V. A. Abilov, M. K. Kerimov, “Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$”, Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1364–1368; Comput. Math. Math. Phys., 49:8 (2009), 1298–1302
Linking options:
https://www.mathnet.ru/eng/zvmmf4731 https://www.mathnet.ru/eng/zvmmf/v49/i8/p1364
|
|