Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2009, Volume 49, Number 5, Pages 771–775 (Mi zvmmf4683)  

On a recursive inverse eigenvalue problem

Kh. D. Ikramov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119992, Russia
References:
Abstract: Let $s_1,\dots,s_n$ – be arbitrary complex scalars. It is required to construct an $n\times n$ normal matrix $A$ such that $s_i$ is an eigenvalue of the leading principal submatrix $A_i$, $i=1,2,\dots,n$. It is shown that, along with the obvious diagonal solution $\operatorname{diag}(s_1,\dots,s_n)$, this problem always admits a much more interesting nondiagonal solution $A$. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix $A_i$ is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices $A_i$ and $A_{i+1}$.
Key words: inverse eigenvalue problem, symmetric matrices, normal matrices, principal submatrices.
Received: 28.07.2008
English version:
Computational Mathematics and Mathematical Physics, 2009, Volume 49, Issue 5, Pages 743–747
DOI: https://doi.org/10.1134/S0965542509050017
Bibliographic databases:
Document Type: Article
UDC: 519.614
Language: Russian
Citation: Kh. D. Ikramov, “On a recursive inverse eigenvalue problem”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009), 771–775; Comput. Math. Math. Phys., 49:5 (2009), 743–747
Citation in format AMSBIB
\Bibitem{Ikr09}
\by Kh.~D.~Ikramov
\paper On a~recursive inverse eigenvalue problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2009
\vol 49
\issue 5
\pages 771--775
\mathnet{http://mi.mathnet.ru/zvmmf4683}
\zmath{https://zbmath.org/?q=an:05649728}
\transl
\jour Comput. Math. Math. Phys.
\yr 2009
\vol 49
\issue 5
\pages 743--747
\crossref{https://doi.org/10.1134/S0965542509050017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266139300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67649100154}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4683
  • https://www.mathnet.ru/eng/zvmmf/v49/i5/p771
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024