Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 7, Pages 1156–1166 (Mi zvmmf4556)  

This article is cited in 4 scientific papers (total in 6 papers)

On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix

S. K. Godunova, A. N. Malyshevb

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Koptyuga 4, Novosibirsk, 630090, Russia
b Department of Mathematics, University of Bergen, Johannes Brunsgate 12, Bergen, 5008, Norway
References:
Abstract: Let $\tilde\lambda$ be an approximate eigenvalue of multiplicity $m_c=n-r$ of an $n\times n$ real symmetric tridiagonal matrix $T$ having nonzero off-diagonal entries. A fast algorithm is proposed (and numerically tested) for deleting $m_c$ rows of $T-\tilde\lambda I$ so that the condition number of the $r\times n$ matrix $B$ formed of the remaining r rows is as small as possible. A special basis of $m_c$ vectors with local supports is constructed for the subspace kerB. These vectors are approximate eigenvectors of $T$ corresponding to $\tilde\lambda$. Another method for deleting $m_c$ rows of $T-\tilde\lambda I$ is also proposed. This method uses a rank-revealing $\mathrm{QR}$ decomposition; however, it requires a considerably larger number of arithmetic operations. For the latter algorithm, the condition number of $B$ is estimated, and orthogonality estimates for vectors of the special basis of $\operatorname{ker}B$ are derived.
Key words: tridiagonal matrix, eigenvalues, eigenvectors, Sturm sequences.
Received: 25.12.2007
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 7, Pages 1089–1099
DOI: https://doi.org/10.1134/S0965542508070026
Bibliographic databases:
Document Type: Article
UDC: 519.614
Language: Russian
Citation: S. K. Godunov, A. N. Malyshev, “On a special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a symmetric tridiagonal matrix”, Zh. Vychisl. Mat. Mat. Fiz., 48:7 (2008), 1156–1166; Comput. Math. Math. Phys., 48:7 (2008), 1089–1099
Citation in format AMSBIB
\Bibitem{GodMal08}
\by S.~K.~Godunov, A.~N.~Malyshev
\paper On a~special basis of approximate eigenvectors with local supports for an isolated narrow cluster of eigenvalues of a~symmetric tridiagonal matrix
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 7
\pages 1156--1166
\mathnet{http://mi.mathnet.ru/zvmmf4556}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 7
\pages 1089--1099
\crossref{https://doi.org/10.1134/S0965542508070026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262334500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-47849120364}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf4556
  • https://www.mathnet.ru/eng/zvmmf/v48/i7/p1156
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:534
    Full-text PDF :234
    References:90
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024