|
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 1983, Volume 23, Number 3, Pages 754–756
(Mi zvmmf4533)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Scientific communications
Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables
Yu. A. Zuev, V. N. Trishin Moscow
Abstract:
It is shown that there is a monotonic Boolean function whose representation by a system of linear inequalities with $n$ Boolean variables requires not less than $$\binom{n}{[n/2]}n^{-1}$$ inequalities.
Received: 24.03.1982 Revised: 24.11.1982
Citation:
Yu. A. Zuev, V. N. Trishin, “Lower bound for the number of inequalities representing a monotone Boolean function of $n$ variables”, Zh. Vychisl. Mat. Mat. Fiz., 23:3 (1983), 754–756; U.S.S.R. Comput. Math. Math. Phys., 23:3 (1983), 155–156
Linking options:
https://www.mathnet.ru/eng/zvmmf4533 https://www.mathnet.ru/eng/zvmmf/v23/i3/p754
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 93 | First page: | 1 |
|