Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 7, Pages 1302–1321 (Mi zvmmf449)  

This article is cited in 16 scientific papers (total in 17 papers)

Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects

D. B. Volkov-Bogorodskiia, Yu. G. Evtushenkob, V. I. Zubovb, S. A. Lur'eb

a Institute of Applied Mechanics, Russian Academy of Sciences, Leninskii pr. 32-A, Moscow, 117334, Russia
b Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
References:
Abstract: Local scale effects for linear continuous media are investigated as applied to the composites reinforced by nanoparticles. A mathematical model of the interphase layer is proposed that describes the specific nature of deformations in the neighborhood of the interface between different phases in an inhomogeneous material. The characteristic length of the interphase layer is determined formally in terms of the parameters of the mathematical model. The local stress state in the neighborhood of the phase boundaries in the interphase layer is examined. This stress can cause a significant change of the integral macromechanical characteristics of the material as a whole if the interphase boundaries are long. Such a situation is observed in composite materials reinforced by microparticles and nanoparticles even when the volume concentration of the inclusions is small. A numerical simulation of the stress state is performed on the basis of the block analytical-numerical multipole method with regard for the local effects related to the special nature of the deformation of the interphase layer in the vicinity of the interface.
Key words: mathematical modeling, deformation of nonocomposites, analytical-numerical multipole method, Papkovich–Cosserat medium, scale effects.
Received: 24.06.2005
Revised: 07.02.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 7, Pages 1234–1253
DOI: https://doi.org/10.1134/S0965542506070153
Bibliographic databases:
Document Type: Article
UDC: 539.634
Language: Russian
Citation: D. B. Volkov-Bogorodskii, Yu. G. Evtushenko, V. I. Zubov, S. A. Lur'e, “Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects”, Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1302–1321; Comput. Math. Math. Phys., 46:7 (2006), 1234–1253
Citation in format AMSBIB
\Bibitem{VolEvtZub06}
\by D.~B.~Volkov-Bogorodskii, Yu.~G.~Evtushenko, V.~I.~Zubov, S.~A.~Lur'e
\paper Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 7
\pages 1302--1321
\mathnet{http://mi.mathnet.ru/zvmmf449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500587}
\elib{https://elibrary.ru/item.asp?id=13526698}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 7
\pages 1234--1253
\crossref{https://doi.org/10.1134/S0965542506070153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746714312}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf449
  • https://www.mathnet.ru/eng/zvmmf/v46/i7/p1302
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :203
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024