Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 7, Pages 1195–1210 (Mi zvmmf438)  

This article is cited in 9 scientific papers (total in 9 papers)

Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions

S. L. Skorokhodova, D. V. Khristoforovb

a Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
b Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
References:
Abstract: A method for calculating eigenvalues $\lambda_{mn}(c)$ corresponding to the wave spheroidal functions in the case of a complex parameter c is proposed, and a comprehensive numerical analysis is performed. It is shown that some points $c_s$ are the branch points of the functions $\lambda_{mn}(c)$ with different indexes $n_1$ and $n_2$ so that the value $\lambda_{mn_1}(c_s)$ is a double one: $\lambda_{mn_1}(c_s)=\lambda_{mn_2}(c_s)$. The numerical analysis suggests that, for each fixed $m$, all the branches of the eigenvalues $\lambda_{mn}(c)$ corresponding to the even spheroidal functions form a complete analytic function of the complex argument $c$. Similarly, all the branches of the eigenvalues $\lambda_{mn}(c)$ corresponding to the odd spheroidal functions form a complete analytic function of $c$. To perform highly accurate calculations of the branch points $c_s$ of the double eigenvalues $\lambda_{mn}(c)$, the Padé approximants, the Hermite–Padé quadratic approximants, and the generalized Newton iterative method are used. A large number of branch points are calculated.
Key words: wave spheroidal functions, computation of eigenvalues, computation of branch points of eigenvalues, Padé approximants, generalized Newton iterative method.
Received: 21.12.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 7, Pages 1132–1146
DOI: https://doi.org/10.1134/S0965542506070049
Bibliographic databases:
Document Type: Article
UDC: 519.6:517.589
Language: Russian
Citation: S. L. Skorokhodov, D. V. Khristoforov, “Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions”, Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1195–1210; Comput. Math. Math. Phys., 46:7 (2006), 1132–1146
Citation in format AMSBIB
\Bibitem{SkoKhr06}
\by S.~L.~Skorokhodov, D.~V.~Khristoforov
\paper Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 7
\pages 1195--1210
\mathnet{http://mi.mathnet.ru/zvmmf438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2500176}
\elib{https://elibrary.ru/item.asp?id=13531969}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 7
\pages 1132--1146
\crossref{https://doi.org/10.1134/S0965542506070049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746688483}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf438
  • https://www.mathnet.ru/eng/zvmmf/v46/i7/p1195
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :315
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024