Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 11, Pages 2009–2023 (Mi zvmmf382)  

This article is cited in 38 scientific papers (total in 38 papers)

Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier

V. E. Berezkin, G. K. Kamenev, A. V. Lotov

Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
References:
Abstract: New hybrid methods for approximating the Pareto frontier of the feasible set of criteria vectors in nonlinear multicriteria optimization problems with nonconvex Pareto frontiers are considered. Since the approximation of the Pareto frontier is an ill-posed problem, the methods are based on approximating the Edgeworth–Pareto hull (EPH), i.e., the maximum set having the same Pareto frontier as the original feasible set of criteria vectors. The EPH approximation also makes it possible to visualize the Pareto frontier and to estimate the quality of the approximation. In the methods proposed, the statistical estimation of the quality of the current EPH approximation is combined with its improvement based on a combination of random search, local optimization, adaptive compression of the search region, and genetic algorithms.
Key words: multicriteria optimization, Pareto frontier, Edgeworth–Pareto hull, approximation methods, statistical estimates, adaptive methods, global search, local optimization, genetic optimization algorithms.
Received: 10.04.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 11, Pages 1918–1931
DOI: https://doi.org/10.1134/S096554250611008X
Bibliographic databases:
Document Type: Article
UDC: 519.626
Language: Russian
Citation: V. E. Berezkin, G. K. Kamenev, A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 2009–2023; Comput. Math. Math. Phys., 46:11 (2006), 1918–1931
Citation in format AMSBIB
\Bibitem{BerKamLot06}
\by V.~E.~Berezkin, G.~K.~Kamenev, A.~V.~Lotov
\paper Hybrid adaptive methods for approximating a~nonconvex multidimensional Pareto frontier
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 11
\pages 2009--2023
\mathnet{http://mi.mathnet.ru/zvmmf382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304073}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 11
\pages 1918--1931
\crossref{https://doi.org/10.1134/S096554250611008X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845347883}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf382
  • https://www.mathnet.ru/eng/zvmmf/v46/i11/p2009
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024