Abstract:
Analytical principles of the theory of Bézier curves are presented. A new approach to the construction of composite Bézier curves of prescribed smoothness both on a plane and in a multidimensional Euclidean space is proposed.
Key words:
Bernstein polynomials, constructing Bézier curves on the basis of Bernstein polynomials, geometric design.
Citation:
M. I. Grigor'ev, V. N. Malozemov, A. N. Sergeev, “Bernstein polynomials and composite Bézier curves”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 1962–1971; Comput. Math. Math. Phys., 46:11 (2006), 1872–1881
This publication is cited in the following 5 articles:
Vladimir Kostyukov, Igor Evdokimov, Vladislav Gissov, Lecture Notes in Computer Science, 14214, Interactive Collaborative Robotics, 2023, 322
V. A. Kostjukov, M. Y. Medvedev, V. Kh. Pshikhopov, “Algorithms for Planning Smoothed Individual Trajectories of Ground Robots”, Mehatronika, avtomatizaciâ, upravlenie, 23:11 (2022), 585
A. S. Ilinskii, I. S. Polyanskii, D. E. Stepanov, “O skhodimosti baritsentricheskogo metoda v reshenii vnutrennikh zadach Dirikhle i Neimana v R2 dlya uravneniya Gelmgoltsa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:1 (2021), 3–18
D. L. Vinokurskii, K. Yu. Ganshin, O. S. Mezentseva, F. V. Samoilov, “Planirovanie traektorii gruppy bespilotnykh letatelnykhapparatov s ispolzovaniem godografa Pifagora i sostavnykh krivykh Bernshteina-Beze na ploskosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 31:2 (2020), 70–78
Mohammad Asif Zaman, Shuvro Chowdhury, “Modified Bézier Curves with Shape-Preserving Characteristics Using Differential Evolution Optimization Algorithm”, Advances in Numerical Analysis, 2013 (2013), 1