Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 12, Pages 2277–2288 (Mi zvmmf373)  

This article is cited in 6 scientific papers (total in 6 papers)

Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method

A. T. Ismail-zadeab, A. I. Korotkiic, I. A. Tsepelevc

a International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Varshavskoe sh. 79, korpus 2, Moscow, 117556, Russia
b Geophysical Institute, Karlsruhe University, Hertzstr. 16, Karlsruhe, 76187, Germany
c Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219, Russia
Abstract: Inverse (time-reverse) simulation of three-dimensional thermoconvective flows is considered for a highly viscous incompressible fluid with temperature-dependent density and viscosity. The model of the fluid dynamics is described by the Stokes equations, the incompressibility and heat balance equations subject to the appropriate initial and boundary conditions. To solve the problem backward in time, the quasi-reversibility method is applied to the heat balance equation. The numerical solution is based on the introduction of a two-component vector potential for the velocity of the medium, on the application of the finite element method with a special tricubic spline basis for computing this potential, and on the application of the splitting method and the method of characteristics for computing the temperature. The numerical algorithm is designed to be executed on parallel computers. The proposed numerical algorithm is used to reconstruct the evolution of diapiric structures in the Earth's upper mantle. The computational efficiency of the algorithm is analyzed on the basis of the appropriate functionals of residuals.
Key words: inverse problem, ill-posed problem, thermal convection, incompressible fluid, singularly perturbed problem, quasi-reversibility method, parallel algorithm.
Received: 12.05.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 12, Pages 2176–2186
DOI: https://doi.org/10.1134/S0965542506120153
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: A. T. Ismail-zade, A. I. Korotkii, I. A. Tsepelev, “Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method”, Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006), 2277–2288; Comput. Math. Math. Phys., 46:12 (2006), 2176–2186
Citation in format AMSBIB
\Bibitem{IsmKorTse06}
\by A.~T.~Ismail-zade, A.~I.~Korotkii, I.~A.~Tsepelev
\paper Three-dimensional numerical simulation of the inverse problem of thermal convection using the quasi-reversibility method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 12
\pages 2277--2288
\mathnet{http://mi.mathnet.ru/zvmmf373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2344972}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 12
\pages 2176--2186
\crossref{https://doi.org/10.1134/S0965542506120153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846179665}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf373
  • https://www.mathnet.ru/eng/zvmmf/v46/i12/p2277
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024