Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 12, Pages 2149–2158 (Mi zvmmf362)  

Application of wavelet bases in linear and nonlinear approximation to functions from Besov spaces

E. V. Burnaev

Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141700, Russia
Abstract: Linear and nonlinear approximations to functions from Besov spaces $B^\sigma_{p,q}([0,1])$, $\sigma>0$, $1\le p,q\le\infty$, in a wavelet basis are considered. It is shown that an optimal linear approximation by a $D$-dimensional subspace of basis wavelet functions has an error of order $D^{-\min(\sigma,\sigma+1/2-1/p)}$ for all $1\le p\le\infty$ and $\sigma>\max(1/p-1/2,0)$. An original scheme is proposed for optimal nonlinear approximation. It is shown how a $D$-dimensional subspace of basis wavelet functions is to be chosen depending on the approximated function so that the error is on the order of $D^{-\sigma}$ for all $1\le p\le\infty$ and $\sigma>\max(1/p-1/2,0)$ . The nonlinear approximation scheme proposed does not require any a priori information on the approximated function.
Key words: Besov spaces, wavelet basis, linear approximation, nonlinear approximation.
Received: 28.11.2005
Revised: 03.06.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 12, Pages 2051–2060
DOI: https://doi.org/10.1134/S0965542506120049
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: E. V. Burnaev, “Application of wavelet bases in linear and nonlinear approximation to functions from Besov spaces”, Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006), 2149–2158; Comput. Math. Math. Phys., 46:12 (2006), 2051–2060
Citation in format AMSBIB
\Bibitem{Bur06}
\by E.~V.~Burnaev
\paper Application of wavelet bases in linear and nonlinear approximation to functions from Besov spaces
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 12
\pages 2149--2158
\mathnet{http://mi.mathnet.ru/zvmmf362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2344961}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 12
\pages 2051--2060
\crossref{https://doi.org/10.1134/S0965542506120049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846144732}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf362
  • https://www.mathnet.ru/eng/zvmmf/v46/i12/p2149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024