Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 12, Pages 2138–2148 (Mi zvmmf361)  

A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices

M. Danaa, Kh. D. Ikramovb

a Faculty of Mathematics, University of Kurdistan, Sanandage, 66177, Islamic Republic of Iran
b Faculty of Computational Mathematics and Cybernetics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
Abstract: Two minimal residual methods for solving linear systems of the form $(\alpha U+\beta I)x=b$, where $U$ is a unitary matrix, are compared numerically. The first method uses conventional Krylov subspaces, while the second involves generalized Krylov subspaces. Experiments favor the second method if $|\alpha|>|\beta|$. Moreover, the greater the ratio $|\alpha|/|\beta|$, the higher the superiority of the second method.
Key words: Krylov subspace methods, minimal residual methods, normal matrices, unitary matrices.
Received: 26.06.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 12, Pages 2040–2050
DOI: https://doi.org/10.1134/S0965542506120037
Bibliographic databases:
Document Type: Article
UDC: 519.61
Language: Russian
Citation: M. Dana, Kh. D. Ikramov, “A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices”, Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006), 2138–2148; Comput. Math. Math. Phys., 46:12 (2006), 2040–2050
Citation in format AMSBIB
\Bibitem{DanIkr06}
\by M.~Dana, Kh.~D.~Ikramov
\paper A~numerical comparison of two minimal residual methods for linear polynomials in unitary matrices
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 12
\pages 2138--2148
\mathnet{http://mi.mathnet.ru/zvmmf361}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2344960}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 12
\pages 2040--2050
\crossref{https://doi.org/10.1134/S0965542506120037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846182938}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf361
  • https://www.mathnet.ru/eng/zvmmf/v46/i12/p2138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024