Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2007, Volume 47, Number 2, Pages 288–301 (Mi zvmmf335)  

This article is cited in 8 scientific papers (total in 8 papers)

Numerical simulation of pollution and oil spill spreading by the stochastic discrete particle method

B. V. Arkhipov, V. N. Koterov, V. V. Solbakov, D. A. Shapochkin, Yu. S. Yurezanskaya

Dorodnitsyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russia
References:
Abstract: The features of the stochastic discrete particle method are discussed as applied to the simulation of pollutant advection and diffusion in a turbulent flow and to the spread of a thin film of a viscous substance (oil) on the surface of water. The diffusion tensor in the former problem depends on the scale of the pollution cloud, and the diffusivity in the latter problem depends nonlinearly on the desired function. For pollution dispersion by a turbulent flow, a stochastic discrete particle algorithm is constructed in the case when the diffusion tensor corresponds to the Richardson 4/3 law. The numerical and analytical results are shown to agree well. The problem of oil film spreading is described by a quasilinear advection-diffusion equation. For this problem, a random walking algorithm is constructed in which the variance of the walking particle step depends on the desired function. For both instantaneous and time-continuous sources of pollutants, the solution produced by the stochastic discrete particle method agrees well with the analytical and/or numerical solutions to the test problems under consideration.
Key words: stochastic processes, discrete particle method, advection-diffusion equation, turbulent mixing, oil spills, pollution.
Received: 15.08.2006
Revised: 28.08.2006
English version:
Computational Mathematics and Mathematical Physics, 2007, Volume 47, Issue 2, Pages 280–292
DOI: https://doi.org/10.1134/S096554250702011X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: B. V. Arkhipov, V. N. Koterov, V. V. Solbakov, D. A. Shapochkin, Yu. S. Yurezanskaya, “Numerical simulation of pollution and oil spill spreading by the stochastic discrete particle method”, Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007), 288–301; Comput. Math. Math. Phys., 47:2 (2007), 280–292
Citation in format AMSBIB
\Bibitem{ArkKotSol07}
\by B.~V.~Arkhipov, V.~N.~Koterov, V.~V.~Solbakov, D.~A.~Shapochkin, Yu.~S.~Yurezanskaya
\paper Numerical simulation of pollution and oil spill spreading by the stochastic discrete particle method
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2007
\vol 47
\issue 2
\pages 288--301
\mathnet{http://mi.mathnet.ru/zvmmf335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2351818}
\zmath{https://zbmath.org/?q=an:05200981}
\transl
\jour Comput. Math. Math. Phys.
\yr 2007
\vol 47
\issue 2
\pages 280--292
\crossref{https://doi.org/10.1134/S096554250702011X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947181935}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf335
  • https://www.mathnet.ru/eng/zvmmf/v47/i2/p288
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:736
    Full-text PDF :372
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024